The spectroscopy of a prototypical indolenine-based squaraine dye is analysed theoretically using state-of-the-art methodologies for the simulation of spectral lineshapes, and experimentally using optical absorption and emission spectroscopies. Density functional theory and its time-dependent extension are used to determine the stability of several conformers, to compute their excitation energies, equilibrium geometries and vibrational frequencies, both in the ground and in their first excited singlet state. Finally the generating function approach is used to simulate the vibronic lineshape of the low energy valence ππ* excitation and emission spectra. Solvent effects are also computed and discussed by using the polarizable continuum model. The developed model correctly reproduces the main spectral features of the squaraine, and allows us to identify the vibrational motions that mainly contribute to the observed lineshape.
Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine-based squaraine dye
BORRELLI, Raffaele;ELLENA, Silvano;BAROLO, CLAUDIA
2014-01-01
Abstract
The spectroscopy of a prototypical indolenine-based squaraine dye is analysed theoretically using state-of-the-art methodologies for the simulation of spectral lineshapes, and experimentally using optical absorption and emission spectroscopies. Density functional theory and its time-dependent extension are used to determine the stability of several conformers, to compute their excitation energies, equilibrium geometries and vibrational frequencies, both in the ground and in their first excited singlet state. Finally the generating function approach is used to simulate the vibronic lineshape of the low energy valence ππ* excitation and emission spectra. Solvent effects are also computed and discussed by using the polarizable continuum model. The developed model correctly reproduces the main spectral features of the squaraine, and allows us to identify the vibrational motions that mainly contribute to the observed lineshape.File | Dimensione | Formato | |
---|---|---|---|
isq_unito.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
3.64 MB
Formato
Adobe PDF
|
3.64 MB | Adobe PDF | Visualizza/Apri |
c3cp54298j.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.