Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes’ identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.

Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges

CORDERO, Chiara Emilia Irma
First
;
BICCHI, Carlo
2015-01-01

Abstract

Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes’ identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.
2015
407
169
191
Comprehensive two-dimensional gas chromatography; Gas chromatography–olfactometry; Sensomics; Food aroma; High concentration capacity headspace techniques; Multidimensional gas chromatography
Chiara Cordero*; Johannes Kiefl; Peter Schieberle; Stephen E. Reichenbach; Carlo Bicchi
File in questo prodotto:
File Dimensione Formato  
OA_Two-dimensional comprehensive gas chromatography and food sensory properties potentials and challenges.pdf

Open Access dal 31/10/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 901.14 kB
Formato Adobe PDF
901.14 kB Adobe PDF Visualizza/Apri
10.1007_s00216-014-8248-z(1).pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/158481
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 85
social impact