Fumaric acid esters (FAEs) exert therapeutic effects in patients with psoriasis and multiple sclerosis, however their mode of action remains elusive. Pyroptosis is a caspase-1-dependent pro-inflammatory form of programmed cell death, mediated by the activation of inflammasomes. To understand the pharmacological basis of the therapeutic effects of FAEs, the anti-pyroptotic activity of dimethyl fumarate (DMF) and its hydrolysis metabolite monomethyl fumarate (MMF) was studied in a model of NLRP3 inflammasome-mediated pyroptosis of human macrophages. Phorbol myristate acetate-differentiated THP-1 cells were exposed to lipopolysaccharide (5 μg/ml; 4h), then pulsed with ATP (5mM; 1h). MMF, DMF, or parthenolide (positive control) were added 1h before the ATP pulse. The pyroptotic cell death was evaluated by morphological examination and quantified by measuring the lactate dehydrogenase leakage. The ATP-triggered death of THP-1 cells (60.4 ± 4.0%) was significantly (P<0.01) prevented by DMF, in a time- and concentration-dependent manner (pIC50 and maximal effect were 6.6 and 67.6 ± 1.2%, respectively). MMF was less efficacious than DMF. These effects were accompanied by a decreased intracellular activation of caspase-1 and interleukin-1β release from ATP-treated cells, thus suggesting that FAEs antagonise the effects of ATP by preventing the activation of the pyroptotic molecular cascade leading to cell death. These results indicate that FAEs are endowed with anti-pyroptotic activity, which may contribute to their therapeutic effects.

Fumaric acid esters prevent the NLRP3 inflammasome-mediated and ATP-triggered pyroptosis of differentiated THP-1 cells

MIGLIO, Gianluca
First
;
VEGLIA, ELEONORA;FANTOZZI, Roberto
2015-01-01

Abstract

Fumaric acid esters (FAEs) exert therapeutic effects in patients with psoriasis and multiple sclerosis, however their mode of action remains elusive. Pyroptosis is a caspase-1-dependent pro-inflammatory form of programmed cell death, mediated by the activation of inflammasomes. To understand the pharmacological basis of the therapeutic effects of FAEs, the anti-pyroptotic activity of dimethyl fumarate (DMF) and its hydrolysis metabolite monomethyl fumarate (MMF) was studied in a model of NLRP3 inflammasome-mediated pyroptosis of human macrophages. Phorbol myristate acetate-differentiated THP-1 cells were exposed to lipopolysaccharide (5 μg/ml; 4h), then pulsed with ATP (5mM; 1h). MMF, DMF, or parthenolide (positive control) were added 1h before the ATP pulse. The pyroptotic cell death was evaluated by morphological examination and quantified by measuring the lactate dehydrogenase leakage. The ATP-triggered death of THP-1 cells (60.4 ± 4.0%) was significantly (P<0.01) prevented by DMF, in a time- and concentration-dependent manner (pIC50 and maximal effect were 6.6 and 67.6 ± 1.2%, respectively). MMF was less efficacious than DMF. These effects were accompanied by a decreased intracellular activation of caspase-1 and interleukin-1β release from ATP-treated cells, thus suggesting that FAEs antagonise the effects of ATP by preventing the activation of the pyroptotic molecular cascade leading to cell death. These results indicate that FAEs are endowed with anti-pyroptotic activity, which may contribute to their therapeutic effects.
2015
28
1
215
219
http://www.sciencedirect.com/science/article/pii/S1567576915003021
Dimethyl fumarate; Macrophages; Pyroptosis
Miglio Gianluca; Eleonora Veglia; Roberto Fantozzi
File in questo prodotto:
File Dimensione Formato  
Miglio_IntImmunol_2015.pdf

Accesso riservato

Descrizione: pdf
Tipo di file: PDF EDITORIALE
Dimensione 617.93 kB
Formato Adobe PDF
617.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Miglio_IntImmuno_2015.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 617.93 kB
Formato Adobe PDF
617.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Miglio_2015.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1587041
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact