Background. Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions. Methods. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic. Results and conclusions. epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact.

EpiDMS: Data Management and Analytics for Decision Making from Epidemic Spread Simulation Ensembles

POCCIA, SILVESTRO ROBERTO;SAPINO, Maria Luisa
2016-01-01

Abstract

Background. Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions. Methods. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic. Results and conclusions. epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact.
2016
214
427
432
Sicong Liu; Silvestro Poccia; K. Selcuk Candan; Gerardo Chowell; Maria Luisa Sapino
File in questo prodotto:
File Dimensione Formato  
jiw305.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 499.47 kB
Formato Adobe PDF
499.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1592558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 9
social impact