Activated carbons are widely used as supports for industrial catalysts based on metal nanoparticles. The catalytic performance of carbon-supported catalysts is strongly influenced by the carbon activation method. Notwithstanding this important role, the effect induced by different activation methods has been rarely investigated in detail. This work deals with two carbons of wood origin, activated either by steam or by phosphoric acid, and the corresponding catalysts based on supported Pd nanoparticles. We demonstrate that the catalysts perform in a different way in hydrogenation reactions depending on the nature of the carbon used as a support, being the palladium dispersion the same. We propose a multi-technique approach to fully characterize both carbons and catalysts at the micro- and nanoscale. In particular, we investigate how the activation procedure influences the texture (by N2 physisorption), the morphology (by Scanning Electron Microscopy), the structure (by Solid State Nuclear Magnetic Resonance, Raman spectroscopy and X-ray Diffraction) and the surface properties (by X-ray Photoelectron Spectroscopy, Diffuse Reflectance Infrared Spectroscopy and Inelastic Neutron Scattering) of carbons and of the related catalysts. The comprehensive characterization approach proposed in this work allows the rationalization, at least in part, of the role of activated carbons in enhancing the performance of a hydrogenation catalyst.
A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts
LAZZARINI, ANDREA;PIOVANO, ANDREA;PELLEGRINI, RICCARDO;AGOSTINI, Giovanni;CHIEROTTI, Michele Remo;GOBETTO, Roberto;BATTIATO, ALFIO;SPOTO, Giuseppe;ZECCHINA, Adriano;LAMBERTI, Carlo;GROPPO, Elena Clara
2016-01-01
Abstract
Activated carbons are widely used as supports for industrial catalysts based on metal nanoparticles. The catalytic performance of carbon-supported catalysts is strongly influenced by the carbon activation method. Notwithstanding this important role, the effect induced by different activation methods has been rarely investigated in detail. This work deals with two carbons of wood origin, activated either by steam or by phosphoric acid, and the corresponding catalysts based on supported Pd nanoparticles. We demonstrate that the catalysts perform in a different way in hydrogenation reactions depending on the nature of the carbon used as a support, being the palladium dispersion the same. We propose a multi-technique approach to fully characterize both carbons and catalysts at the micro- and nanoscale. In particular, we investigate how the activation procedure influences the texture (by N2 physisorption), the morphology (by Scanning Electron Microscopy), the structure (by Solid State Nuclear Magnetic Resonance, Raman spectroscopy and X-ray Diffraction) and the surface properties (by X-ray Photoelectron Spectroscopy, Diffuse Reflectance Infrared Spectroscopy and Inelastic Neutron Scattering) of carbons and of the related catalysts. The comprehensive characterization approach proposed in this work allows the rationalization, at least in part, of the role of activated carbons in enhancing the performance of a hydrogenation catalyst.File | Dimensione | Formato | |
---|---|---|---|
Lazzarini_Carbons_CatalSciTech_2016.pdf
Accesso aperto
Descrizione: Pdf editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.