Structural hierarchy coupled with material heterogeneity is often identified in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group
Computational modeling of the mechanics of hierarchical materials
BOSIA, Federico;
2016-01-01
Abstract
Structural hierarchy coupled with material heterogeneity is often identified in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our groupFile | Dimensione | Formato | |
---|---|---|---|
postprint_4aperto.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
2016_Signetti_MRS_Bull.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
498.07 kB
Formato
Adobe PDF
|
498.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.