Propargyl radical addition to 1,3-butadiene seems to be a promising channel to form 5-, 6-, and 7-membered rings. These are important steps in the growth of polycyclic aromatic hydrocarbons and soot platelets. The reaction mechanism, involving 97 intermediates and 115 transition structures, was studied by CBS-QB3 method (reported here) and density functional theory. All these structures were included in the subsequent RRKM study at different combustion pressures (P=30-0.01 atm) and temperatures (T=1200-2100 K). At P=30 atm, open-chain products dominate in the whole range of temperatures. The importance of 5- and 6-membered rings rises with T, reaching a maximum in the T range 1500-1800 K. A more modest yield in 7-rings is present at T=1500 K. At P =I atm, in the range 1200-1500 K, the yield in 5- and 6-rings dominate. 5- and 6-rings yields are about 41% at 1200 K (CBS-QB3 data). At P =0.1 atm, 6-rings become the main products a 1000 K (35%), and then they decrease to 12% (2100 K) and 5-rings rise up to 44% (1200 K), and then decrease to 14% (2100 K). Open-chains are the main products at T < 1000 K and T > 1500 K. Then, at P=0.01 atm, open-chain products are important below 900 K and above 1500 K,6-rings are main contributors between 900 K and 1500K. 6-Rings reach a maximum yield of 47% (1200 K) and 5-rings 44% (1200K) and 7-rings 17% (900 K). The main products form through to H losses.
Reaction between propargyl radical and 1,3-butadiene to form five to seven membered rings. Theoretical study
MARANZANA, Andrea;GHIGO, Giovanni;TONACHINI, Glauco
2016-01-01
Abstract
Propargyl radical addition to 1,3-butadiene seems to be a promising channel to form 5-, 6-, and 7-membered rings. These are important steps in the growth of polycyclic aromatic hydrocarbons and soot platelets. The reaction mechanism, involving 97 intermediates and 115 transition structures, was studied by CBS-QB3 method (reported here) and density functional theory. All these structures were included in the subsequent RRKM study at different combustion pressures (P=30-0.01 atm) and temperatures (T=1200-2100 K). At P=30 atm, open-chain products dominate in the whole range of temperatures. The importance of 5- and 6-membered rings rises with T, reaching a maximum in the T range 1500-1800 K. A more modest yield in 7-rings is present at T=1500 K. At P =I atm, in the range 1200-1500 K, the yield in 5- and 6-rings dominate. 5- and 6-rings yields are about 41% at 1200 K (CBS-QB3 data). At P =0.1 atm, 6-rings become the main products a 1000 K (35%), and then they decrease to 12% (2100 K) and 5-rings rise up to 44% (1200 K), and then decrease to 14% (2100 K). Open-chains are the main products at T < 1000 K and T > 1500 K. Then, at P=0.01 atm, open-chain products are important below 900 K and above 1500 K,6-rings are main contributors between 900 K and 1500K. 6-Rings reach a maximum yield of 47% (1200 K) and 5-rings 44% (1200K) and 7-rings 17% (900 K). The main products form through to H losses.File | Dimensione | Formato | |
---|---|---|---|
Propargyl+butadiene_CombFlame_2016_AperTO.pdf
Open Access dal 30/03/2018
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
671.95 kB
Formato
Adobe PDF
|
671.95 kB | Adobe PDF | Visualizza/Apri |
Trogolo-2_propargile+butadiene_CombFlame_2016.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
3.94 MB
Formato
Adobe PDF
|
3.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.