Mammalian adult neurogenesis has remained enigmatic. Two lines of research have emerged. One focuses on a potential repair mechanism in the human brain. The other aims at elucidating its functional role in the hippocampal formation, chiefly in cognitive processes; however, thus far it has been unsuccessful. Here, we try to recognize the sources of errors and conceptual confusion in comparative studies and neurobehavioral approaches with a focus on mice. Evolutionarily, mammalian adult neurogenesis appears as protracted juvenile neurogenesis originating from precursor cells in the secondary proliferation zones, from where newly formed cells migrate to target regions in the forebrain. This late developmental process is downregulated differentially in various brain structures depending on species and age. Adult neurogenesis declines substantially during early adulthood and persists at low levels into senescence. Short-lasting episodes in proliferation or reduction of adult neurogenesis may reflect a multitude of factors, and have been studied chiefly in mice and rats. Comparative studies face both of laboratories, lacking quantification of important reference measures (e.g. granule cell number) and evaluation of maturational markers whose persistence might be functionally more relevant than proliferation rates. Likewise, the confusion about the functional role of variations in adult hippocampal neurogenesis has many causes. Prominent is an inferential statistical approach, usually with low statistical power. Interpretation is complicated by multiple theories about hippocampal function, often unrealistically extrapolating from humans to rodents. We believe that the field of mammalian adult neurogenesis needs more critical thinking, more sophisticated hypotheses, better statistical, technical and behavioral approaches, and a broader conceptual perspective incorporating comparative aspects rather than neglecting them.

Adult Neurogenesis in Mammals: Variations and Confusions

BONFANTI, Luca
2016-01-01

Abstract

Mammalian adult neurogenesis has remained enigmatic. Two lines of research have emerged. One focuses on a potential repair mechanism in the human brain. The other aims at elucidating its functional role in the hippocampal formation, chiefly in cognitive processes; however, thus far it has been unsuccessful. Here, we try to recognize the sources of errors and conceptual confusion in comparative studies and neurobehavioral approaches with a focus on mice. Evolutionarily, mammalian adult neurogenesis appears as protracted juvenile neurogenesis originating from precursor cells in the secondary proliferation zones, from where newly formed cells migrate to target regions in the forebrain. This late developmental process is downregulated differentially in various brain structures depending on species and age. Adult neurogenesis declines substantially during early adulthood and persists at low levels into senescence. Short-lasting episodes in proliferation or reduction of adult neurogenesis may reflect a multitude of factors, and have been studied chiefly in mice and rats. Comparative studies face both of laboratories, lacking quantification of important reference measures (e.g. granule cell number) and evaluation of maturational markers whose persistence might be functionally more relevant than proliferation rates. Likewise, the confusion about the functional role of variations in adult hippocampal neurogenesis has many causes. Prominent is an inferential statistical approach, usually with low statistical power. Interpretation is complicated by multiple theories about hippocampal function, often unrealistically extrapolating from humans to rodents. We believe that the field of mammalian adult neurogenesis needs more critical thinking, more sophisticated hypotheses, better statistical, technical and behavioral approaches, and a broader conceptual perspective incorporating comparative aspects rather than neglecting them.
2016
87
205
221
http://www.karger.com/Article/FullText/446905
Hans-Peter Lipp, Bonfanti, Luca
File in questo prodotto:
File Dimensione Formato  
Lipp-Bonfanti 2016.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 351.85 kB
Formato Adobe PDF
351.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1599059
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact