We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of 3.88+0.48−0.42 R⊙ and 1.53+0.13−0.12 M⊙, respectively, and a very close-in transiting planet, with a/R⋆=3.4. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of 50.3+9.7−9.4 M⊕. In combination with a radius measurement of 8.3±1.1 R⊕, this results in a mean planetary density of 0.50+0.29−0.17 g~cm−3. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.

THE K2-ESPRINT PROJECT. V. A SHORT-PERIOD GIANT PLANET ORBITING A SUBGIANT STAR

GANDOLFI, Davide;
2016-01-01

Abstract

We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of 3.88+0.48−0.42 R⊙ and 1.53+0.13−0.12 M⊙, respectively, and a very close-in transiting planet, with a/R⋆=3.4. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of 50.3+9.7−9.4 M⊕. In combination with a radius measurement of 8.3±1.1 R⊕, this results in a mean planetary density of 0.50+0.29−0.17 g~cm−3. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.
2016
152
5
143-1
143-11
http://iopscience.iop.org/article/10.3847/0004-6256/152/5/143/meta;jsessionid=F69B8F976C9822CBCAEB09C59C8DAF87.ip-10-40-2-120
Planetary systems, planets and satellites: detection, planets and satellites: dynamical evolution and stability, stars: fundamental parameters, stars: individual: K2-39
Van Eylen, Vincent; Albrecht, Simon; Gandolfi, Davide; Dai, Fei; Winn, Joshua N.; Hirano, Teriyuki; Narita, Norio; Bruntt, Hans; Prieto-Arranz, Jorge; Béjar, Víctor J. S.; Nowak, Grzegorz; Lund, Mikkel N.; Palle, Enric; Ribas, Ignasi; Sanchis-Ojeda, Roberto; Yu, Liang; Arriagada, Pamela; Butler, R. Paul; Crane, Jeffrey D.; Handberg, Rasmus; Deeg, Hans; Jessen-Hansen, Jens; Johnson, John A.; Nespral, David; Rogers, Leslie; Ryu, Tsuguru; Shectman, Stephen; Shrotriya, Tushar; Slumstrup, Ditte; Takeda, Yoichi; Teske, Johanna; Thompson, Ian; Vanderburg, Andrew; Wittenmyer, Robert
File in questo prodotto:
File Dimensione Formato  
VanEylen_2016_2.pdf

Accesso aperto

Descrizione: Versione: arXiv - astro-ph
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1610486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 35
social impact