Context. Open cluster (OC) stars share the same age and metallicity, and, in general, their age and mass can be estimated with higher precision than for field stars. For this reason, OCs are considered an importantlaboratory to study the relation between the physical properties of the planets and those of their host stars, and the evolution of planetary systems. However, only a handful of planets have been discovered around OC main-sequence stars so far, all of them in single-planet systems. For this reason we started an observational campaign within the GAPS collaboration to search for and characterize planets in OCs Aims: We monitored the Praesepe member Pr 0211 to improve our knowledge of the eccentricity of the hot Jupiter (HJ) that is already known to orbit this star and search for additional intermediate-mass planets. An eccentric orbit for the HJ would support a planet-planet scattering process rather than a disk-driven migration after its formation. Methods: From 2012 to 2015, we collected 70 radial velocity (RV) measurements with HARPS-N and 36 with TRES of Pr 0211. Simultaneous photometric observations were carried out with the robotic STELLA telescope to characterize the stellar activity. We discovered a long-term trend in the RV residuals that we show as being due to the presence of a second, massive, outer planet. Orbital parameters for the two planets are derived by simultaneously fitting RVs and photometric light curves, with the activity signal modelled as a series of sinusoids at the rotational period of the star and its harmonics. Results: We confirm that Pr 0211b has a nearly circular orbit (e = 0.02 ± 0.01), with an improvement of a factor two with respect to the previous determination of its eccentricity, and estimate that Pr 0211c has a mass Mp sin i = 7.9 ± 0.2 MJup, a period P> 3500 days and a very eccentric orbit (e> 0.60). This kind of peculiar system may be typical of open clusters if the planet-planet scattering phase, which lead to the formation of HJs, is caused by stellar encounters rather than by unstable primordial orbits. Pr 0211 is the first multi-planet system discovered around an OC star.

The GAPS programme with HARPS-N at TNG: XI. Pr 0211 in M 44: The first multi-planet system in an open cluster

GANDOLFI, Davide;
2016-01-01

Abstract

Context. Open cluster (OC) stars share the same age and metallicity, and, in general, their age and mass can be estimated with higher precision than for field stars. For this reason, OCs are considered an importantlaboratory to study the relation between the physical properties of the planets and those of their host stars, and the evolution of planetary systems. However, only a handful of planets have been discovered around OC main-sequence stars so far, all of them in single-planet systems. For this reason we started an observational campaign within the GAPS collaboration to search for and characterize planets in OCs Aims: We monitored the Praesepe member Pr 0211 to improve our knowledge of the eccentricity of the hot Jupiter (HJ) that is already known to orbit this star and search for additional intermediate-mass planets. An eccentric orbit for the HJ would support a planet-planet scattering process rather than a disk-driven migration after its formation. Methods: From 2012 to 2015, we collected 70 radial velocity (RV) measurements with HARPS-N and 36 with TRES of Pr 0211. Simultaneous photometric observations were carried out with the robotic STELLA telescope to characterize the stellar activity. We discovered a long-term trend in the RV residuals that we show as being due to the presence of a second, massive, outer planet. Orbital parameters for the two planets are derived by simultaneously fitting RVs and photometric light curves, with the activity signal modelled as a series of sinusoids at the rotational period of the star and its harmonics. Results: We confirm that Pr 0211b has a nearly circular orbit (e = 0.02 ± 0.01), with an improvement of a factor two with respect to the previous determination of its eccentricity, and estimate that Pr 0211c has a mass Mp sin i = 7.9 ± 0.2 MJup, a period P> 3500 days and a very eccentric orbit (e> 0.60). This kind of peculiar system may be typical of open clusters if the planet-planet scattering phase, which lead to the formation of HJs, is caused by stellar encounters rather than by unstable primordial orbits. Pr 0211 is the first multi-planet system discovered around an OC star.
2016
Inglese
Esperti anonimi
588
A118-1
A118-12
12
http://www.aanda.org/articles/aa/abs/2016/04/aa27933-15/aa27933-15.html
Press release Media INAF: http://www.media.inaf.it/2016/02/02/sistema-planetario-nellammasso-di-galileo/ ; Press release "La Repubblica": http://www.repubblica.it/scienze/2016/02/02/news/scoperto_il_primo_sistema_planetario_multiplo_in_un_ammasso_di_stelle-132553427/
Planetary systems; Techniques: photometric; Techniques: radial velocities; Astronomy and Astrophysics; Space and Planetary Science
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
48
Malavolta, L.; Nascimbeni, V.; Piotto, G.; Quinn, S.N.; Borsato, L.; Granata, V.; Bonomo, A.S.; Marzari, F.; Bedin, L.R.; Rainer, M.; Desidera, S.; La...espandi
info:eu-repo/semantics/article
partially_open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Malavolta_2016.pdf

Accesso aperto

Descrizione: Versione arXiv - astro-ph
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri
aa27933-15.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 5.26 MB
Formato Adobe PDF
5.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1610872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 76
social impact