The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP- 211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.

The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK

HOXHA, ERIOLA;TEMPIA, Filippo;
2016-01-01

Abstract

The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP- 211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.
2016
101
426
438
www.elsevier.com/locate/neuropharm
http://dx.doi.org/10.1016/j.neuropharm.2015.10.019
5-HT7 receptor; Cerebellum; Long-term depression; Purkinje cell; Serotonin; Synaptic transmission; Animals; Cerebellar Cortex; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; In Vitro Techniques; Long-Term Synaptic Depression; MAP Kinase Kinase Kinases; Male; Mice; Neurons; Piperazines; Protein Kinase C; Receptors, Serotonin; Serotonin Agents; Signal Transduction; Synapses; Pharmacology; Cellular and Molecular Neuroscience
Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta
File in questo prodotto:
File Dimensione Formato  
Neuropharma_2016_The 5-HT7 Receptor_OA.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Neuropharmacology 2016.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1611751
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact