We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost, middle, and most dependent lung regions. Each dog was studied at positive end-expiratory pressure (PEEP) of 5 and 15 cm H2O and three levels of tidal volume (VT; low, medium, and high). For each PEEP-VT combination, we obtained a computed tomographic (CT) scan at end-inspiration and end-expiration. The variations of Ppl and Pes pressures were correlated (r = 0.86 +/- 0.07, p < 0.0001), as was the vertical gradient of transpulmonary (PL) and superimposed pressure (r = 0.92, p < 0.0001). Recruitment proceeded continuously along the entire volume-pressure curve. Estimated threshold opening pressures were normally distributed (mode = 20 to 25 cm H2O). The amount of end-expiratory collapse at the same PEEP and PL was significantly lower when ventilation was performed at high VT. End-inspiratory and end-expiratory collapse were highly correlated (r = 0.86, p < 0.0001), suggesting that as more tissue is recruited at end-inspiration, more remains recruited at end-expiration. When superimposed pressure exceeded applied airway pressure (Paw), collapse significantly increased.

Recruitment and derecruitment during acute respiratory failure: an experimental study

CAIRONI, Pietro;
2001-01-01

Abstract

We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost, middle, and most dependent lung regions. Each dog was studied at positive end-expiratory pressure (PEEP) of 5 and 15 cm H2O and three levels of tidal volume (VT; low, medium, and high). For each PEEP-VT combination, we obtained a computed tomographic (CT) scan at end-inspiration and end-expiration. The variations of Ppl and Pes pressures were correlated (r = 0.86 +/- 0.07, p < 0.0001), as was the vertical gradient of transpulmonary (PL) and superimposed pressure (r = 0.92, p < 0.0001). Recruitment proceeded continuously along the entire volume-pressure curve. Estimated threshold opening pressures were normally distributed (mode = 20 to 25 cm H2O). The amount of end-expiratory collapse at the same PEEP and PL was significantly lower when ventilation was performed at high VT. End-inspiratory and end-expiratory collapse were highly correlated (r = 0.86, p < 0.0001), suggesting that as more tissue is recruited at end-inspiration, more remains recruited at end-expiration. When superimposed pressure exceeded applied airway pressure (Paw), collapse significantly increased.
2001
164
1
122
130
Pulmonary Gas Exchange; Animals; Respiratory Insufficiency; Oleic Acid; Respiration; Tomography; X-Ray Computed; Dogs; Artificial; Positive-Pressure Respiration; Male; Female
P. Pelosi; M. Goldner; A. McKibben; A. Adams; G. Eccher; P. Caironi; S. Losappio; L. Gattinoni; J. J. Marini
File in questo prodotto:
File Dimensione Formato  
Pelosi_ajrccm_2001.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 196.45 kB
Formato Adobe PDF
196.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1613548
Citazioni
  • ???jsp.display-item.citation.pmc??? 106
  • Scopus 402
  • ???jsp.display-item.citation.isi??? 341
social impact