Septic shock remains a major problem in Intensive Care Unit, with high lethality and high-risk second lines treatments. In this preliminary retrospective investigation we examined plasma metabolome and clinical features in a subset of 20 patients with severe septic shock (SOFA score >8), enrolled in the multicenter Albumin Italian Outcome Sepsis study (ALBIOS, NCT00707122). Our purpose was to evaluate the changes of circulating metabolites in relation to mortality as a pilot study to be extended in a larger cohort. Patients were analyzed according to their 28-days and 90-days mortality. Metabolites were measured using a targeted mass spectrometry-based quantitative metabolomic approach that included acylcarnitines, aminoacids, biogenic amines, glycerophospholipids, sphingolipids, and sugars. Data-mining techniques were applied to evaluate the association of metabolites with mortality. Low unsaturated long-chain phosphatidylcholines and lysophosphatidylcholines species were associated with long-term survival (90-days) together with circulating kynurenine. Moreover, a decrease of these glycerophospholipids was associated to the event at 28-days and 90-days in combination with clinical variables such as cardiovascular SOFA score (28-day mortality model) or renal replacement therapy (90-day mortality model). Early changes in the plasma levels of both lipid species and kynurenine associated with mortality have potential implications for early intervention and discovering new target therapy.

Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach

CAIRONI, Pietro;
2016-01-01

Abstract

Septic shock remains a major problem in Intensive Care Unit, with high lethality and high-risk second lines treatments. In this preliminary retrospective investigation we examined plasma metabolome and clinical features in a subset of 20 patients with severe septic shock (SOFA score >8), enrolled in the multicenter Albumin Italian Outcome Sepsis study (ALBIOS, NCT00707122). Our purpose was to evaluate the changes of circulating metabolites in relation to mortality as a pilot study to be extended in a larger cohort. Patients were analyzed according to their 28-days and 90-days mortality. Metabolites were measured using a targeted mass spectrometry-based quantitative metabolomic approach that included acylcarnitines, aminoacids, biogenic amines, glycerophospholipids, sphingolipids, and sugars. Data-mining techniques were applied to evaluate the association of metabolites with mortality. Low unsaturated long-chain phosphatidylcholines and lysophosphatidylcholines species were associated with long-term survival (90-days) together with circulating kynurenine. Moreover, a decrease of these glycerophospholipids was associated to the event at 28-days and 90-days in combination with clinical variables such as cardiovascular SOFA score (28-day mortality model) or renal replacement therapy (90-day mortality model). Early changes in the plasma levels of both lipid species and kynurenine associated with mortality have potential implications for early intervention and discovering new target therapy.
2016
6
1
11
failure assessment score; severe sepsis; organ failure; lysophosphatidylcholine; metabolism; kynurenine; polyamines; management; receptor; cells
M. Ferrario; A. Cambiaghi; L. Brunelli; S. Giordano; P. Caironi; L. Guatteri; F. Raimondi; L. Gattinoni; R. Latini; S. Masson; G. Ristagno; R. Pastorelli
File in questo prodotto:
File Dimensione Formato  
Ferrario_sr_2016.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1613556
Citazioni
  • ???jsp.display-item.citation.pmc??? 57
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 113
social impact