As columns age and differ between systems, retention times for comprehensive two-dimensional gas chromatography (GCxGC) may vary between runs. To properly analyze GCxGC chromatograms, it often is desirable to align the retention times of chromatographic features, such as analyte peaks, between chromatograms. Previous work by the authors has shown that global, low-degree polynomial transformation functions, namely affine, second-degree polynomial, and third-degree polynomial, are effective for aligning pairs of two-dimensional chromatograms acquired with dual second columns and detectors (GC×2GC). This work assesses the experimental performance of these global methods on more general GCxGC chromatogram pairs and compares their performance to that of a recent, robust, local alignment algorithm for GCxGC data [Gros et al. Anal. Chem. 2012, 84, 9033]. Measuring performance with the root-mean-square (RMS) residual differences in retention times for matched peaks suggests that global, low-degree polynomial transformations outperform the local algorithm given a sufficiently large set of alignment points, and are able to improve misalignment by over 95% based on a lower-bound benchmark of inherent variability. However, with small sets of alignment points, the local method demonstrated lower error rates (although with greater computational overhead). For GCxGC chromatogram pairs with only slight initial misalignment, none of the global or local methods performed well. In some cases with initial misalignment near the inherent variability of the system, these methods worsened alignment, suggesting that it may be better not to perform alignment in such cases.

Effectiveness of Global, Low-Degree Polynomial Transformations for GCxGC Data Alignment

CORDERO, Chiara Emilia Irma;
2016-01-01

Abstract

As columns age and differ between systems, retention times for comprehensive two-dimensional gas chromatography (GCxGC) may vary between runs. To properly analyze GCxGC chromatograms, it often is desirable to align the retention times of chromatographic features, such as analyte peaks, between chromatograms. Previous work by the authors has shown that global, low-degree polynomial transformation functions, namely affine, second-degree polynomial, and third-degree polynomial, are effective for aligning pairs of two-dimensional chromatograms acquired with dual second columns and detectors (GC×2GC). This work assesses the experimental performance of these global methods on more general GCxGC chromatogram pairs and compares their performance to that of a recent, robust, local alignment algorithm for GCxGC data [Gros et al. Anal. Chem. 2012, 84, 9033]. Measuring performance with the root-mean-square (RMS) residual differences in retention times for matched peaks suggests that global, low-degree polynomial transformations outperform the local algorithm given a sufficiently large set of alignment points, and are able to improve misalignment by over 95% based on a lower-bound benchmark of inherent variability. However, with small sets of alignment points, the local method demonstrated lower error rates (although with greater computational overhead). For GCxGC chromatogram pairs with only slight initial misalignment, none of the global or local methods performed well. In some cases with initial misalignment near the inherent variability of the system, these methods worsened alignment, suggesting that it may be better not to perform alignment in such cases.
2016
Inglese
Esperti anonimi
88
10028
10035
8
gcxgc; transformation; template matching; global polynomial tranformation; differential flow modulation; thermal modulation
STATI UNITI D'AMERICA
BRASILE
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
6
Rempe, Davis W.; Reichenbach, Stephen E.; Tao, Qingping; Cordero, Chiara; Rathbun, Wayne E.; Zini, Cláudia Alcaraz
info:eu-repo/semantics/article
reserved
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
final full text.pdf

Accesso riservato

Descrizione: full text editoriale
Tipo di file: PDF EDITORIALE
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1615155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact