Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction (15N) or covalently bonded to the halogen atom (13C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13C NQS experiments show a positive, linear correlation between the chemical shifts and the C−I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis.

Natural Abundance 15N and 13C Solid-State NMR Chemical Shifts: High Sensitivity Probes of the Halogen Bond Geometry

CERREIA VIOGLIO, PAOLO;NERVI, Carlo;CHIEROTTI, Michele Remo;GOBETTO, Roberto;
2016-01-01

Abstract

Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction (15N) or covalently bonded to the halogen atom (13C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13C NQS experiments show a positive, linear correlation between the chemical shifts and the C−I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis.
22
47
16819
16828
www.interscience.wiley.com
chemical shifts; CPMAS; halogen bonding; NMR spectroscopy; normalized distance parameter; Chemistry (all)
Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R.; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo
File in questo prodotto:
File Dimensione Formato  
PAPER SSNMR-XB_27_June_2016.docx

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.01 MB
Formato Microsoft Word XML
1.01 MB Microsoft Word XML Visualizza/Apri
090_Cerreia-Vioglio_et_al-2016-Chemistry_-_A_European_Journal.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 962 kB
Formato Adobe PDF
962 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
090_Cerreia-Vioglio_et_al-2016-Chemistry_-_A_European_Journal.sup-1.pdf

Accesso aperto

Tipo di file: DATASET
Dimensione 849.26 kB
Formato Adobe PDF
849.26 kB Adobe PDF Visualizza/Apri
090_Cerreia-Vioglio_et_al-2016-Chemistry_-_A_European_Journal_Cover.pdf

Accesso aperto

Descrizione: Cover
Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1615669
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact