The first super-Earth with measured radius discovered was CoRoT-7b and it has opened the new field of rocky exoplanet characterisation. To better understand this interesting system, new observations were taken with the CoRoT satellite. During this run 90 new transits were obtained in the imagette mode. These were analysed together with the previous 151 transits obtained in the discovery run and HARPS radial velocity observations to derive accurate system parameters. A difference is found in the posterior probability distribution of the transit parameters between the previous CoRoT run (LRa01) and the new run (LRa06). We propose that this is due to an extra noise component in the previous CoRoT run suspected of being transit spot occultation events. These lead to the mean transit shape becoming V-shaped. We show that the extra noise component is dominant at low stellar flux levels and reject these transits in the final analysis. We obtained a planetary radius, Rp = 1.585 ± 0.064 R⊕ , in agreement with previous estimates. Combining the planetary radius with the new mass estimates results in a planetary density of 1.19 ± 0.27 ρ⊕ which is consistent with a rocky composition. The CoRoT-7 system remains an excellent test bed for the effects of activity in the derivation of planetary parameters in the shallow transit regime.

Revisiting the transits of CoRoT-7b at a lower activity level

GANDOLFI, Davide;
2014-01-01

Abstract

The first super-Earth with measured radius discovered was CoRoT-7b and it has opened the new field of rocky exoplanet characterisation. To better understand this interesting system, new observations were taken with the CoRoT satellite. During this run 90 new transits were obtained in the imagette mode. These were analysed together with the previous 151 transits obtained in the discovery run and HARPS radial velocity observations to derive accurate system parameters. A difference is found in the posterior probability distribution of the transit parameters between the previous CoRoT run (LRa01) and the new run (LRa06). We propose that this is due to an extra noise component in the previous CoRoT run suspected of being transit spot occultation events. These lead to the mean transit shape becoming V-shaped. We show that the extra noise component is dominant at low stellar flux levels and reject these transits in the final analysis. We obtained a planetary radius, Rp = 1.585 ± 0.064 R⊕ , in agreement with previous estimates. Combining the planetary radius with the new mass estimates results in a planetary density of 1.19 ± 0.27 ρ⊕ which is consistent with a rocky composition. The CoRoT-7 system remains an excellent test bed for the effects of activity in the derivation of planetary parameters in the shallow transit regime.
2014
569
A74
1
13
http://www.aanda.org/articles/aa/abs/2014/09/aa23939-14/aa23939-14.html
Methods: observational; Planetary systems; Stars: activity; Stars: individual: CoRoT-7b; Techniques: photometric; Astronomy and Astrophysics; Space and Planetary Science
Barros, S.C.C; Almenara, J.M.; Deleuil, M.; Diaz, R.F.; Csizmadia, Sz.; Cabrera, J.; Chaintreuil, S.; Collier Cameron, A.; Hatzes, A.; Haywood, R.; La...espandi
File in questo prodotto:
File Dimensione Formato  
aa23939-14.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1619743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 51
social impact