A general agreement on what actually happened during the Messinian salinity crisis (MSC) has been reached in the minds of most geologists but, in the deepest settings of the Mediterranean Basin, the picture is still far from being finalized and several different scenarios for the crisis have been proposed, with different significant implications for hydrocarbon exploration. The currently accepted MSC paradigm of the ‘shallow-water deep-basin’ model, which implies high-amplitude sea-level oscillations (> 1500 m) of the Mediterranean up to its desiccation, is usually considered as fact. As a consequence, it is on this model that the implications of the MSC events on the Mediterranean petroleum systems are commonly based. In fact, an alternative, deep-water, non-desiccated scenario of the MSC is possible: it (i) implies the permanence of a large water body in the Mediterranean throughout the entire Messinian salinity crisis, but with strongly reduced Atlantic connections; and (ii) envisages a genetic link between Messinian erosion of the Mediterranean margins and deep brine development. In this work, we focus on the strong implications of an assessment of the petroleum systems of the Mediterranean and adjoining areas (e.g. the Black Sea Basin) that can be based on such a non-desiccated MSC scenario. In particular, the near-full basin model delivers a more realistic definition of Messinian source-rock generation and distribution, as well as of the magnitude of water-unloading processes and their effects on hydrocarbon accumulation.

The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems

GENNARI, Rocco;
2016-01-01

Abstract

A general agreement on what actually happened during the Messinian salinity crisis (MSC) has been reached in the minds of most geologists but, in the deepest settings of the Mediterranean Basin, the picture is still far from being finalized and several different scenarios for the crisis have been proposed, with different significant implications for hydrocarbon exploration. The currently accepted MSC paradigm of the ‘shallow-water deep-basin’ model, which implies high-amplitude sea-level oscillations (> 1500 m) of the Mediterranean up to its desiccation, is usually considered as fact. As a consequence, it is on this model that the implications of the MSC events on the Mediterranean petroleum systems are commonly based. In fact, an alternative, deep-water, non-desiccated scenario of the MSC is possible: it (i) implies the permanence of a large water body in the Mediterranean throughout the entire Messinian salinity crisis, but with strongly reduced Atlantic connections; and (ii) envisages a genetic link between Messinian erosion of the Mediterranean margins and deep brine development. In this work, we focus on the strong implications of an assessment of the petroleum systems of the Mediterranean and adjoining areas (e.g. the Black Sea Basin) that can be based on such a non-desiccated MSC scenario. In particular, the near-full basin model delivers a more realistic definition of Messinian source-rock generation and distribution, as well as of the magnitude of water-unloading processes and their effects on hydrocarbon accumulation.
2016
22
4
283
290
https://pg.lyellcollection.org/content/22/4/283
Messinian salinity crisis; Mediterranean; petroleum systems; evaporite; stratigraphy
Roveri Marco; Gennari Rocco; Lugli Stefano; Manzi Vinicio; Minelli Nicola; Reghizzi Matteo; Riva Angelo; Rossi Massimo E.; Schreiber Charlotte B.
File in questo prodotto:
File Dimensione Formato  
Petroleum Geoscience_2016_Gennari R.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Roveri et al 2016 proof.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1622455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 36
social impact