In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1 × 1) thin film deposited onto Ag(100). The formation of MnO(1 × 1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1 × 1) is thermodynamically more stable than MnO(2 × 1) by ∼0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1 × 1) terrace sites. DFT calculations of a water monomer on MnO(1 × 1)/Ag(100) show the dissociated form is energetically more favorable than molecular adsorption, with a hydroxylation activation barrier 0.4 eV per H2O. These results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.

Water dissociation on MnO(1 × 1)/Ag(100)

FERRARI, Anna Maria;
2016-01-01

Abstract

In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1 × 1) thin film deposited onto Ag(100). The formation of MnO(1 × 1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1 × 1) is thermodynamically more stable than MnO(2 × 1) by ∼0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1 × 1) terrace sites. DFT calculations of a water monomer on MnO(1 × 1)/Ag(100) show the dissociated form is energetically more favorable than molecular adsorption, with a hydroxylation activation barrier 0.4 eV per H2O. These results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.
2016
18
36
25355
25363
http://www.rsc.org/Publishing/Journals/CP/index.asp
Physics and Astronomy (all); Physical and Theoretical Chemistry
Arble, Chris; Tong, Xiao; Giordano, Livia; Ferrari, Anna Maria; Newberg, John T.
File in questo prodotto:
File Dimensione Formato  
160523 manuscript water MnO JN.DOCX

Accesso riservato

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 2.08 MB
Formato Microsoft Word XML
2.08 MB Microsoft Word XML   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1622902
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact