Background: L-DOPA is an amino acid precursor to the neurotransmitter dopamine that is extensively used as a prodrug for the treatment of Parkinson’s disease. However, L-DOPA is an unstable compound: when exposed to light or added to aqueous solutions, it may degrade, compromising its therapeutic properties. Methods: In this work, a new type of drug-loaded cyclodextrin-based nanosponge, obtained using molecular imprinting, is described for the prolonged and controlled release of L-DOPA. The molecularly imprinted nanosponges (MIP-NSs) were synthesized by cross-linking β-cyclodextrin with 1,1ʹ-carbonyldiimidazole in DMF in the presence of L-DOPA as a template molecule. TGA, DSC and FTIR analyses were performed to characterize the interactions between L-DOPA and the two nanosponge structures. Quantitative NMR spectroscopy was used to determine the amount and the affinity of L-DOPA entrapped in the nanosponges. The in vitro L-DOPA release kinetics from the NSs were quantitatively determined by HPLC analysis. Results: The MIP-NSs show a slower and more prolonged release profile than the non-imprinted nanosponges. No degradation of the L-DOPA hosted in the MIP-NSs was observed after long-term storage at room temperature. Conclusions: The MIP-NSs are a promising alternative for the storage and controlled delivery of L-DOPA.
Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease
TROTTA, Francesco;CALDERA, FABRIZIO;CAVALLI, Roberta;SOSTER, MARCO;RIEDO, CHIARA;BIASIZZO, MIRIAM;BRUNELLA, VALENTINA GIOVANNA
2016-01-01
Abstract
Background: L-DOPA is an amino acid precursor to the neurotransmitter dopamine that is extensively used as a prodrug for the treatment of Parkinson’s disease. However, L-DOPA is an unstable compound: when exposed to light or added to aqueous solutions, it may degrade, compromising its therapeutic properties. Methods: In this work, a new type of drug-loaded cyclodextrin-based nanosponge, obtained using molecular imprinting, is described for the prolonged and controlled release of L-DOPA. The molecularly imprinted nanosponges (MIP-NSs) were synthesized by cross-linking β-cyclodextrin with 1,1ʹ-carbonyldiimidazole in DMF in the presence of L-DOPA as a template molecule. TGA, DSC and FTIR analyses were performed to characterize the interactions between L-DOPA and the two nanosponge structures. Quantitative NMR spectroscopy was used to determine the amount and the affinity of L-DOPA entrapped in the nanosponges. The in vitro L-DOPA release kinetics from the NSs were quantitatively determined by HPLC analysis. Results: The MIP-NSs show a slower and more prolonged release profile than the non-imprinted nanosponges. No degradation of the L-DOPA hosted in the MIP-NSs was observed after long-term storage at room temperature. Conclusions: The MIP-NSs are a promising alternative for the storage and controlled delivery of L-DOPA.File | Dimensione | Formato | |
---|---|---|---|
L-DOPA-paper_4aperto.pdf
Accesso aperto
Descrizione: POSTPRINT_PAPER
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
PAPER.pdf
Accesso riservato
Descrizione: PDF EDITORIALE
Tipo di file:
PDF EDITORIALE
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.