Male Sprague-Dawley rats were exposed to high-dose (0.5%) lead acetate for periods ranging from 1 to 9 months; then lead exposure was discontinued, and animals were sacrificed after 12 months. Controls were pair-fed. Two additional groups of low-dose (0.01%) and high-dose (0.5%) rats were exposed to lead for 6 months, then lead was discontinued and the rats were treated with three 5-day courses of 0.5% DMSA (dimercaptosuccinic acid) over the next 6 months. Controls were rats exposed to lead for 6 months, then removed from exposure for 6 months without receiving DMSA. Low-dose lead-treated rats showed no significant pathological changes with or without DMSA treatment, but exhibited a significant increase in GFR after DMSA. High-dose lead-treated animals showed no functional or pathological changes when lead exposure was discontinued after 1 month. However, when duration of exposure was 6 or 9 months, GFR was decreased and serum creatinine and urea nitrogen were increased as compared to controls. Tubulointerstitial disease was severe. Administration of DMSA resulted in an improvement in GFR and a decrease in albuminuria, together with a reduction in size and number of nuclear inclusion bodies in proximal tubules. However, tubulointerstitial scarring was only minimally reduced. It may be concluded that, except for brief initial exposure, discontinuation of high-dose lead exposure fails to reverse lead-induced renal damage. Treatment with the chelator, DMSA, improves renal function but has less effect on pathological alterations. As GFR improved after DMSA treatment in both low-dose and high-dose lead-treated rats, irrespective of the degree of pathological alterations, it may be concluded that the DMSA effect is most likely mediated by hemodynamic changes.
Experimental model of lead nephropathy. II. Effect of removal from lead exposure and chelation treatment with dimercaptosuccinic acid (DMSA)
BERGAMASCHI, Enrico;
1992-01-01
Abstract
Male Sprague-Dawley rats were exposed to high-dose (0.5%) lead acetate for periods ranging from 1 to 9 months; then lead exposure was discontinued, and animals were sacrificed after 12 months. Controls were pair-fed. Two additional groups of low-dose (0.01%) and high-dose (0.5%) rats were exposed to lead for 6 months, then lead was discontinued and the rats were treated with three 5-day courses of 0.5% DMSA (dimercaptosuccinic acid) over the next 6 months. Controls were rats exposed to lead for 6 months, then removed from exposure for 6 months without receiving DMSA. Low-dose lead-treated rats showed no significant pathological changes with or without DMSA treatment, but exhibited a significant increase in GFR after DMSA. High-dose lead-treated animals showed no functional or pathological changes when lead exposure was discontinued after 1 month. However, when duration of exposure was 6 or 9 months, GFR was decreased and serum creatinine and urea nitrogen were increased as compared to controls. Tubulointerstitial disease was severe. Administration of DMSA resulted in an improvement in GFR and a decrease in albuminuria, together with a reduction in size and number of nuclear inclusion bodies in proximal tubules. However, tubulointerstitial scarring was only minimally reduced. It may be concluded that, except for brief initial exposure, discontinuation of high-dose lead exposure fails to reverse lead-induced renal damage. Treatment with the chelator, DMSA, improves renal function but has less effect on pathological alterations. As GFR improved after DMSA treatment in both low-dose and high-dose lead-treated rats, irrespective of the degree of pathological alterations, it may be concluded that the DMSA effect is most likely mediated by hemodynamic changes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.