Styrene is a chemical widely used in the plastic industry. The main pathway of styrene metabolism in humans occurs via the oxidation to styrene-7,8-oxide (7,8-SO). The aim of this study was the investigation of a minor metabolic route, involving the oxidation of the arene moiety of styrene, by means of the characterization of the conjugated urinary metabolites of 4-vinylphenol (4-VP). 4-vinylphenol-glucuronide (4-VP-G) and -sulfate (4-VP-S), were measured by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS) from 174 workers belonging to three cohorts recruited in European countries and from 26 volunteers exposed to 50 mg/m(3) (11.8 ppm) of styrene for 8 h. The 4-VP conjugates represented about 0.5-1% of the total excretion of styrene metabolites. Both 4-VP-G and 4-VP-S are eliminated with a monophasic kinetic, the glucuronide being excreted faster (half-time, 2.2 +/- 0.2 h) than the sulfate (half-time 9.7 +/- 1.7 h). The urinary 4-VP was found to be significantly correlated both with airborne styrene (r = 0.607, p < 0.001) and the sum of MA and PGA (r = 0.903, p < 0.001 in "end-of-shift" samples). Apart from 7,8-SO, 4-VP is the only styrene metabolite not shared with ethylbenzene and therefore thought to be a highly specific marker of styrene exposure. However, a measurable background excretion of 4-VP was also found in all urine samples from controls not occupationally exposed to styrene. This background appears to be highly correlated to smoking (p < 0.001) and possibly also to the dietary intake of styrene or 4-VP. Consequently, the use of 4-VP as a biomarker of styrene exposure is recommended for exposures exceeding 1 ppm.

Assessment of biotransformation of the arene moiety of styrene in volunteers and occupationally exposed workers

BERGAMASCHI, Enrico;
2003-01-01

Abstract

Styrene is a chemical widely used in the plastic industry. The main pathway of styrene metabolism in humans occurs via the oxidation to styrene-7,8-oxide (7,8-SO). The aim of this study was the investigation of a minor metabolic route, involving the oxidation of the arene moiety of styrene, by means of the characterization of the conjugated urinary metabolites of 4-vinylphenol (4-VP). 4-vinylphenol-glucuronide (4-VP-G) and -sulfate (4-VP-S), were measured by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS) from 174 workers belonging to three cohorts recruited in European countries and from 26 volunteers exposed to 50 mg/m(3) (11.8 ppm) of styrene for 8 h. The 4-VP conjugates represented about 0.5-1% of the total excretion of styrene metabolites. Both 4-VP-G and 4-VP-S are eliminated with a monophasic kinetic, the glucuronide being excreted faster (half-time, 2.2 +/- 0.2 h) than the sulfate (half-time 9.7 +/- 1.7 h). The urinary 4-VP was found to be significantly correlated both with airborne styrene (r = 0.607, p < 0.001) and the sum of MA and PGA (r = 0.903, p < 0.001 in "end-of-shift" samples). Apart from 7,8-SO, 4-VP is the only styrene metabolite not shared with ethylbenzene and therefore thought to be a highly specific marker of styrene exposure. However, a measurable background excretion of 4-VP was also found in all urine samples from controls not occupationally exposed to styrene. This background appears to be highly correlated to smoking (p < 0.001) and possibly also to the dietary intake of styrene or 4-VP. Consequently, the use of 4-VP as a biomarker of styrene exposure is recommended for exposures exceeding 1 ppm.
2003
189
160
169
MANINI P; BUZIO L; ANDREOLI R; GOLDONI M; BERGAMASCHI E.; JAKUBOWSKI M; VODICKA P; HIRVONEN A; MUTTI A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1623150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact