The generation mechanics of fluid-driven volcano seismic signals, and their evolution with time, remains poorly understood. We present a laboratory study aiming to better constrain the time evolution of such signals across temperature conditions 25 to 175°C in order to simulate a “bubbly liquid.” Simulations used pressures equivalent to volcanic edifices up to 1.6 km in depth using a triaxial deformation apparatus equipped with an array of acoustic emission sensors. We investigate the origin of fluid-driven seismic signals by rapidly venting the pore pressure through a characterized damage zone. During the release of water at 25°C broadband signals were generated, with frequencies ranging from 50 to 160 kHz. However, the decompression of a water/steam phase at 175°C generated a bimodal spectrum of different signals, in the range 100–160 kHz. These new results are consistent with natural signals from active volcanoes, such as Mount Etna, and highlight the role of fluid and gas phases (such as bubbly liquids) in generating different types of volcano-tectonic seismicity

On the generation mechanisms of fluid-driven seismic signals related to volcano-tectonics

VINCIGUERRA, Sergio Carmelo
2017-01-01

Abstract

The generation mechanics of fluid-driven volcano seismic signals, and their evolution with time, remains poorly understood. We present a laboratory study aiming to better constrain the time evolution of such signals across temperature conditions 25 to 175°C in order to simulate a “bubbly liquid.” Simulations used pressures equivalent to volcanic edifices up to 1.6 km in depth using a triaxial deformation apparatus equipped with an array of acoustic emission sensors. We investigate the origin of fluid-driven seismic signals by rapidly venting the pore pressure through a characterized damage zone. During the release of water at 25°C broadband signals were generated, with frequencies ranging from 50 to 160 kHz. However, the decompression of a water/steam phase at 175°C generated a bimodal spectrum of different signals, in the range 100–160 kHz. These new results are consistent with natural signals from active volcanoes, such as Mount Etna, and highlight the role of fluid and gas phases (such as bubbly liquids) in generating different types of volcano-tectonic seismicity
2017
44
1
9
Fazio, M.; Benson, P.M.; Vinciguerra, S.
File in questo prodotto:
File Dimensione Formato  
Fazioetal_GRL_2017.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1624335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact