Grazing management is an important tool to preserve insect biodiversity. Although literature has discussed the importance of grazing pressure adjustment to support grassland insect communities for the ecosystem services they provide, little has been published on the economic sustainability of such management adjustments to date. This study compared continuous grazing (CG) to an innovative rotational grazing system (the biodiversity-friendly rotation - BR), where a subplot was excluded from grazing for two months during the main flowering period. The effects of grazing two different species (cattle and sheep) within both systems were also evaluated. The aims were to assess the effects on butterfly, bumblebee, and ground beetle assemblages, along with the impact on herbage mass and animal performance. The BR enhanced both the abundance and species richness of flower-visiting insect assemblages and it was observed that cattle provided better results than sheep grazing. A multivariate redundancy analysis highlighted that most of the flower-visiting species (including almost all the endangered and locally rare species) were favoured by BR-cattle treatment, mainly due to the high percentage of flower cover and sward heterogeneity involved in this treatment. However, grazing system and grazer species did not affect ground beetle species richness or abundance. Moreover, herbage mass and animal performance (live weight and body condition score) were comparable between CG and BR throughout the grazing season. The BR could be a useful management system to enhance grassland flower-visiting insect assemblages whilst meeting farm production objectives, especially in protected environments where insect conservation is a major target.

A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity

RAVETTO ENRI, SIMONE;PROBO, MASSIMILIANO;
2017-01-01

Abstract

Grazing management is an important tool to preserve insect biodiversity. Although literature has discussed the importance of grazing pressure adjustment to support grassland insect communities for the ecosystem services they provide, little has been published on the economic sustainability of such management adjustments to date. This study compared continuous grazing (CG) to an innovative rotational grazing system (the biodiversity-friendly rotation - BR), where a subplot was excluded from grazing for two months during the main flowering period. The effects of grazing two different species (cattle and sheep) within both systems were also evaluated. The aims were to assess the effects on butterfly, bumblebee, and ground beetle assemblages, along with the impact on herbage mass and animal performance. The BR enhanced both the abundance and species richness of flower-visiting insect assemblages and it was observed that cattle provided better results than sheep grazing. A multivariate redundancy analysis highlighted that most of the flower-visiting species (including almost all the endangered and locally rare species) were favoured by BR-cattle treatment, mainly due to the high percentage of flower cover and sward heterogeneity involved in this treatment. However, grazing system and grazer species did not affect ground beetle species richness or abundance. Moreover, herbage mass and animal performance (live weight and body condition score) were comparable between CG and BR throughout the grazing season. The BR could be a useful management system to enhance grassland flower-visiting insect assemblages whilst meeting farm production objectives, especially in protected environments where insect conservation is a major target.
241
1
10
http://dx.doi.org/10.1016/j.agee.2017.02.030
Butterflies, Cattle, Flower cover, Grazing Management, Ground beetles, Sheep
Ravetto Enri, Simone; Probo, Massimiliano; Farruggia, Anne; Lanore, Laurent; Blanchetete, André; Dumont, Bertrand
File in questo prodotto:
File Dimensione Formato  
7. AEE free version.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1626923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 43
social impact