The Hermite-Birkhoff interpolation problem of a function given on arbitrarily distributed points on the sphere and other manifolds is considered. Each proposed interpolant is expressed as a linear combination of basis functions, the combination coefficients being incomplete Taylor expansions of the interpolated function at the interpolation points. The basis functions depend on the geodesic distance, are orthonormal with respect to the point-evaluation functionals, and have all derivatives equal zero up to a certain order at the interpolation points. A remarkable feature of such interpolants, which belong to the class of partition of unity methods, is that their construction does not require solving linear systems. Numerical tests are given to show the interpolation performance.
Hermite-Birkhoff interpolation on scattered data on the sphere and other manifolds
ALLASIA, Giampietro;CAVORETTO, Roberto;DE ROSSI, Alessandra
2018-01-01
Abstract
The Hermite-Birkhoff interpolation problem of a function given on arbitrarily distributed points on the sphere and other manifolds is considered. Each proposed interpolant is expressed as a linear combination of basis functions, the combination coefficients being incomplete Taylor expansions of the interpolated function at the interpolation points. The basis functions depend on the geodesic distance, are orthonormal with respect to the point-evaluation functionals, and have all derivatives equal zero up to a certain order at the interpolation points. A remarkable feature of such interpolants, which belong to the class of partition of unity methods, is that their construction does not require solving linear systems. Numerical tests are given to show the interpolation performance.File | Dimensione | Formato | |
---|---|---|---|
AMC_2018.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.