Iron (oxyhydr)oxides may act as a sink and source of arsenic (As) in terrestrial and aquatic systems, therefore studying the mechanisms controlling Fe (oxyhydr)oxide transformation under changing environmental conditions is essential for elucidating the fate of As, in terms of release, mobility and speciation. We provide evidence that aging and As(III) loading control the mineralogical and structural evolution of As(III)-bearing Fe (oxyhydr)oxides, and thus influence the extraction of As with compounds which frequently occur in soil solution. During a one year timeframe, partial As(III) oxidation to As(V) and accumulation on poorly crystalline Fe (oxyhydr)oxides were promoted by increasing As(III) contents, which hindered the transformation of less into more crystalline materials. The changes in crystallinity degree and surface properties resulted in the release of different proportions of As(III) and As(V) from the aged compared to the fresh coprecipitates. The extraction of both As species through mechanisms of competition, disaggregation of Fe (oxyhydr)oxides, or both was assessed by employing several anions, whose efficiency decreased in the order: inorganic phosphate > citrate > organic phosphate > chloride ≥ silicate. The tested extractants are key components of environments such as aquifers, waterlogged soils or the rhizosphere of paddy soils, where aqueous As(III) is mobilized from the anoxic soil layers and sequestered by Fe (oxyhydr)oxides under more oxidizing environments.
Aging and arsenite loading control arsenic mobility from ferrihydrite-arsenite coprecipitates
ZANZO, ELENA;BALINT, RAMONA;PRATI, MARCO;CELI, Luisella Roberta;BARBERIS, Elisabetta;MARTIN, Maria
Last
2017-01-01
Abstract
Iron (oxyhydr)oxides may act as a sink and source of arsenic (As) in terrestrial and aquatic systems, therefore studying the mechanisms controlling Fe (oxyhydr)oxide transformation under changing environmental conditions is essential for elucidating the fate of As, in terms of release, mobility and speciation. We provide evidence that aging and As(III) loading control the mineralogical and structural evolution of As(III)-bearing Fe (oxyhydr)oxides, and thus influence the extraction of As with compounds which frequently occur in soil solution. During a one year timeframe, partial As(III) oxidation to As(V) and accumulation on poorly crystalline Fe (oxyhydr)oxides were promoted by increasing As(III) contents, which hindered the transformation of less into more crystalline materials. The changes in crystallinity degree and surface properties resulted in the release of different proportions of As(III) and As(V) from the aged compared to the fresh coprecipitates. The extraction of both As species through mechanisms of competition, disaggregation of Fe (oxyhydr)oxides, or both was assessed by employing several anions, whose efficiency decreased in the order: inorganic phosphate > citrate > organic phosphate > chloride ≥ silicate. The tested extractants are key components of environments such as aquifers, waterlogged soils or the rhizosphere of paddy soils, where aqueous As(III) is mobilized from the anoxic soil layers and sequestered by Fe (oxyhydr)oxides under more oxidizing environments.File | Dimensione | Formato | |
---|---|---|---|
Zanzo et al_2017_Geoderma.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Zanzo et al APERTO.pdf
Open Access dal 02/09/2019
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
2017 Zanzo et al GEODERMA.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.