Recently, the formation of carbonyl compound within e-cigarettes usage has been reported. The aim of this study was to develop a new analytical method for the direct analysis of carbonyl compounds in vaporized liquids. Two different types of e-cigarettes and different puff’s duration have been evaluated, using a modified smoking machine for vapor generation. An isotopic dilution approach, based on deuterated internal standard addition to the e-liquid before filling the e-cigarette tank, has been developed. Carbonyl compounds have been sampled in vapors using a direct, simple, solid-phase microextraction technique with on-fiber derivatization. Related oximes have been analyzed by gas chromatography/mass spectrometry technique. Results confirmed that new carbonyl compounds are formed during the vaping process, and that formation depends both from the heating device and from puffing topography.
Dynamic measurement of newly formed carbonyl compounds in vapors from electronic cigarettes
SALA, CECILIA;MEDANA, Claudio
;AIGOTTI, Riccardo;DAL BELLO, FEDERICA;
2017-01-01
Abstract
Recently, the formation of carbonyl compound within e-cigarettes usage has been reported. The aim of this study was to develop a new analytical method for the direct analysis of carbonyl compounds in vaporized liquids. Two different types of e-cigarettes and different puff’s duration have been evaluated, using a modified smoking machine for vapor generation. An isotopic dilution approach, based on deuterated internal standard addition to the e-liquid before filling the e-cigarette tank, has been developed. Carbonyl compounds have been sampled in vapors using a direct, simple, solid-phase microextraction technique with on-fiber derivatization. Related oximes have been analyzed by gas chromatography/mass spectrometry technique. Results confirmed that new carbonyl compounds are formed during the vaping process, and that formation depends both from the heating device and from puffing topography.File | Dimensione | Formato | |
---|---|---|---|
Sala_EJMS2017_ecig_ald.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
239.32 kB
Formato
Adobe PDF
|
239.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.