In this paper, a spatial-based economic model is proposed with the aim of estimating the most likely harvest cost of a forest block in relation to its particular morphological and operating features. This work, which is based on the classical stumpage price assessment method, presents an economic balance of a forest cut, attained by conducting a cost analysis of each logging phase of the different standard harvesting strategies. The study area is in the North-West of Italy, in the Mount Cotolivier forest compartment, in Oulx, Piedmont. The map of the stand structure, which is included in the Oulx Forest Management Plan, was used to locate blocks (areas considered homogeneous according to the stand structure and forest typology) where silvicultural cuts could be scheduled. The feasibility of the selected logging strategies was mapped considering six conditioning factors, of both a topological and a topographic nature. Their influence was weighted by means of a score assignation and integrated in a Multi-Criteria Decision Making procedure. The scores were mathematically combined to calculate a spatial dependent cost-function (Block Exploitation Aptitude, BEA) in which the suitability of each block to be harvested was mapped through a specific strategy. The obtained BEA was then used to estimate the most suitable productivity rate of the harvests of each block. The unitary costs of the strategies were estimated and then compared to find the most profitable one for each block. This model has proved to be effective in generating objective economic results concerning harvest cuts in productive stands in mountainous areas. The proposed methodology simultaneously takes into account different factors and generates feasibility scenarios, in the space domain, for the considered harvesting strategies. The proposed model represents a prototype on which an operational Decision Support System could be based to assist forest managers over the short-medium term.

A Spatial-Based Decision Support System for wood harvesting management in mountain areas

ACCASTELLO, CRISTIAN;BRUN, Filippo;BORGOGNO MONDINO, Enrico Corrado
Last
2017-01-01

Abstract

In this paper, a spatial-based economic model is proposed with the aim of estimating the most likely harvest cost of a forest block in relation to its particular morphological and operating features. This work, which is based on the classical stumpage price assessment method, presents an economic balance of a forest cut, attained by conducting a cost analysis of each logging phase of the different standard harvesting strategies. The study area is in the North-West of Italy, in the Mount Cotolivier forest compartment, in Oulx, Piedmont. The map of the stand structure, which is included in the Oulx Forest Management Plan, was used to locate blocks (areas considered homogeneous according to the stand structure and forest typology) where silvicultural cuts could be scheduled. The feasibility of the selected logging strategies was mapped considering six conditioning factors, of both a topological and a topographic nature. Their influence was weighted by means of a score assignation and integrated in a Multi-Criteria Decision Making procedure. The scores were mathematically combined to calculate a spatial dependent cost-function (Block Exploitation Aptitude, BEA) in which the suitability of each block to be harvested was mapped through a specific strategy. The obtained BEA was then used to estimate the most suitable productivity rate of the harvests of each block. The unitary costs of the strategies were estimated and then compared to find the most profitable one for each block. This model has proved to be effective in generating objective economic results concerning harvest cuts in productive stands in mountainous areas. The proposed methodology simultaneously takes into account different factors and generates feasibility scenarios, in the space domain, for the considered harvesting strategies. The proposed model represents a prototype on which an operational Decision Support System could be based to assist forest managers over the short-medium term.
2017
67
277
287
http://www.sciencedirect.com/science/article/pii/S0264837716305014
Spatial modelling,Mountain forest management, Stumpage cost Economic valuation, DSS
Accastello, Cristian; Brun, Filippo; Borgogno Mondino, Enrico
File in questo prodotto:
File Dimensione Formato  
Accastello_et_al_PostPrint_4aperto.pdf

Open Access dal 17/06/2020

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF Visualizza/Apri
Accastello_et_al_2017.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1641735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact