We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley’s fern attractor.

Fractal Attractors and Singular Invariant Measures in Two-Sector Growth Models with Random Factor Shares

PRIVILEGGI, Fabio
2018-01-01

Abstract

We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley’s fern attractor.
2018
58
185
201
http://www.sciencedirect.com/science/article/pii/S1007570417302514?via%3Dihub
Two-sector Growth Model; Stochastic Factor Shares; Fractal Attractors; Singular Measures
La Torre, D.; Marsiglio, S.; Mendivil, F.; Privileggi, Fabio
File in questo prodotto:
File Dimensione Formato  
LMMP2Rev.pdf

Open Access dal 02/06/2020

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.29 MB
Formato Adobe PDF
4.29 MB Adobe PDF Visualizza/Apri
LaTorreEtAl17Online.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
LaTorreEtAl18.pdf

Accesso riservato

Descrizione: Articolo principale su supporto cartaceo
Tipo di file: PDF EDITORIALE
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1645069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact