Abstract The adsorption of dissolved organic carbon (DOC) on iron (Fe) (hydr)oxides represents an important stabilization mechanism for soil organic matter (OM) and contributes to soil C accumulation. However, in soils that experience periodic fluctuations in redox conditions the interaction between DOC and Fe (hydr)oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the oxidation of soil solutions containing important amounts of DOC and Fe2+. The aim of this work is to provide new insights into the mechanisms involved, and the amount and selectivity of C retained during the coprecipitation process. A series of Fe-OM associations with increasing C loading was synthesized at pH 6 by surface adsorption or coprecipitation (oxidation of ferrous iron) utilizing rice-straw derived dissolved organic matter. The kinetics of Fe2+ oxidation and complexation, and the total and selective retention of DOC during the coprecipitation process were evaluated. Moreover, synthesized associations, as well as a field coprecipitate collected in situ from a paddy soil, were studied by X-ray diffraction, N2 gas adsorption-desorption isotherms, electrophoretic mobility measurements and thermogravimetric analyses. Coprecipitation resulted in higher organic C contents (49–213 mg g−1) with respect to adsorbed systems (18–47 mg g−1), and favoured the inclusion of OM within highly aggregated associations having particularly low BET specific surface areas. Although coprecipitation led to a strong, selective retention of aromatic constituents, the initial complexation of Fe2+ by aliphatic carboxylic moieties and precipitation as C-rich Fe-OM associations contributed to the total C retention, particularly at higher solution C/Fe ratios. These aliphatic complexes formed during coprecipitation may play an important, though often underestimated, role in C stabilization in soils experiencing frequent redox fluctuations and often characterized by elevated soluble Fe2+ and DOC concentrations.

Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron

SODANO, MARCELLA;LERDA, Cristina;NISTICO', ROBERTO;MARTIN, Maria;MAGNACCA, Giuliana;CELI, Luisella Roberta;SAID PULLICINO, Daniel
Last
2017

Abstract

Abstract The adsorption of dissolved organic carbon (DOC) on iron (Fe) (hydr)oxides represents an important stabilization mechanism for soil organic matter (OM) and contributes to soil C accumulation. However, in soils that experience periodic fluctuations in redox conditions the interaction between DOC and Fe (hydr)oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the oxidation of soil solutions containing important amounts of DOC and Fe2+. The aim of this work is to provide new insights into the mechanisms involved, and the amount and selectivity of C retained during the coprecipitation process. A series of Fe-OM associations with increasing C loading was synthesized at pH 6 by surface adsorption or coprecipitation (oxidation of ferrous iron) utilizing rice-straw derived dissolved organic matter. The kinetics of Fe2+ oxidation and complexation, and the total and selective retention of DOC during the coprecipitation process were evaluated. Moreover, synthesized associations, as well as a field coprecipitate collected in situ from a paddy soil, were studied by X-ray diffraction, N2 gas adsorption-desorption isotherms, electrophoretic mobility measurements and thermogravimetric analyses. Coprecipitation resulted in higher organic C contents (49–213 mg g−1) with respect to adsorbed systems (18–47 mg g−1), and favoured the inclusion of OM within highly aggregated associations having particularly low BET specific surface areas. Although coprecipitation led to a strong, selective retention of aromatic constituents, the initial complexation of Fe2+ by aliphatic carboxylic moieties and precipitation as C-rich Fe-OM associations contributed to the total C retention, particularly at higher solution C/Fe ratios. These aliphatic complexes formed during coprecipitation may play an important, though often underestimated, role in C stabilization in soils experiencing frequent redox fluctuations and often characterized by elevated soluble Fe2+ and DOC concentrations.
307
19
29
Ferrihydrite, Surface adsorption, Complexation, Coprecipitation, Paddy soils, Selective retention
Sodano, Marcella; Lerda, Cristina; Nisticò, Roberto; Martin, Maria; Magnacca, Giuliana; Celi, Luisella; Said-Pullicino, Daniel
File in questo prodotto:
File Dimensione Formato  
Geoderma_307_19.pdf

Accesso riservato

Descrizione: GEODERMA_307_19
Tipo di file: PDF EDITORIALE
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Geoderma_307_19_Open Access.pdf

Accesso aperto con embargo fino al 01/08/2019

Descrizione: Open access
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 8.59 MB
Formato Adobe PDF
8.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1646422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact