Let $F$ and $G$ be linear recurrences over a number field $\mathbb{K}$, and let $\mathfrak{R}$ be a finitely generated subring of $\mathbb{K}$. Furthermore, let $\mathcal{N}$ be the set of positive integers $n$ such that $G(n) \neq 0$ and $F(n) / G(n) \in \mathfrak{R}$. Under mild hypothesis, Corvaja and Zannier proved that $\mathcal{N}$ has zero asymptotic density. We prove that $\#(\mathcal{N} \cap [1, x]) \ll x \cdot (\log\log x / \log x)^h$ for all $x \geq 3$, where $h$ is a positive integer that can be computed in terms of $F$ and $G$. Assuming the Hardy--Littlewood $k$-tuple conjecture, our result is optimal except for the term $\log \log x$.

Distribution of integral values for the ratio of two linear recurrences

SANNA, CARLO
2017-01-01

Abstract

Let $F$ and $G$ be linear recurrences over a number field $\mathbb{K}$, and let $\mathfrak{R}$ be a finitely generated subring of $\mathbb{K}$. Furthermore, let $\mathcal{N}$ be the set of positive integers $n$ such that $G(n) \neq 0$ and $F(n) / G(n) \in \mathfrak{R}$. Under mild hypothesis, Corvaja and Zannier proved that $\mathcal{N}$ has zero asymptotic density. We prove that $\#(\mathcal{N} \cap [1, x]) \ll x \cdot (\log\log x / \log x)^h$ for all $x \geq 3$, where $h$ is a positive integer that can be computed in terms of $F$ and $G$. Assuming the Hardy--Littlewood $k$-tuple conjecture, our result is optimal except for the term $\log \log x$.
2017
180
195
207
http://www.elsevier.com/inca/publications/store/6/2/2/8/9/4/index.htt
Divisibility; Linear recurrence; Algebra and Number Theory
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
distrratiolinrec.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 313.06 kB
Formato Adobe PDF
313.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1647068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact