Let $F$ and $G$ be linear recurrences over a number field $\mathbb{K}$, and let $\mathfrak{R}$ be a finitely generated subring of $\mathbb{K}$. Furthermore, let $\mathcal{N}$ be the set of positive integers $n$ such that $G(n) \neq 0$ and $F(n) / G(n) \in \mathfrak{R}$. Under mild hypothesis, Corvaja and Zannier proved that $\mathcal{N}$ has zero asymptotic density. We prove that $\#(\mathcal{N} \cap [1, x]) \ll x \cdot (\log\log x / \log x)^h$ for all $x \geq 3$, where $h$ is a positive integer that can be computed in terms of $F$ and $G$. Assuming the Hardy--Littlewood $k$-tuple conjecture, our result is optimal except for the term $\log \log x$.
Distribution of integral values for the ratio of two linear recurrences
SANNA, CARLO
2017-01-01
Abstract
Let $F$ and $G$ be linear recurrences over a number field $\mathbb{K}$, and let $\mathfrak{R}$ be a finitely generated subring of $\mathbb{K}$. Furthermore, let $\mathcal{N}$ be the set of positive integers $n$ such that $G(n) \neq 0$ and $F(n) / G(n) \in \mathfrak{R}$. Under mild hypothesis, Corvaja and Zannier proved that $\mathcal{N}$ has zero asymptotic density. We prove that $\#(\mathcal{N} \cap [1, x]) \ll x \cdot (\log\log x / \log x)^h$ for all $x \geq 3$, where $h$ is a positive integer that can be computed in terms of $F$ and $G$. Assuming the Hardy--Littlewood $k$-tuple conjecture, our result is optimal except for the term $\log \log x$.File | Dimensione | Formato | |
---|---|---|---|
distrratiolinrec.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
313.06 kB
Formato
Adobe PDF
|
313.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.