Malachite green (MG) has been widely used in aquaculture to treat a number of microbial and parasitic diseases. It is currently banned in the EU because of the high cytotoxicity and carcinogenic activity, which is also shared by leucomalachite green (LMG), a reduced MG metabolite that can persist in fish tissues for months. There is scant information about the ability of either compound to interact with drug metabolizing enzymes in fish. Therefore we evaluated the in vitro effects of MG and LMG (25, 50 and 100μM) on some DMEs and glutathione (GSH) content in rainbow trout liver subfractions. LMG did not affect any of the examined parameters. In contrast, MG proved to deplete GSH and to depress to a various extent the activities of NAD(P)H cytochrome c reductase, 7-ethoxycoumarin O-deethylase, 1-naphthol uridindiphosphoglucuronyl-transferase and maximally those of 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) accepting 1-chloro2,4-dinitrobenzene (CDNB) as substrate. The inhibition mechanisms of EROD and GST were investigated by means of non-linear Michaelis-Menten kinetics and Lineweaver-Burk plots using 0.175-8μM MG. The calculated IC50 for EROD was 7.1μM, and the inhibition appeared to be competitive (Ki 2.78±0.24μM). In the case of GST, the calculated IC50 was 0.53μM. The inhibition was best described as competitive toward GSH (Ki 0.39±0.02μM) and of mixed-type toward CDNB (Ki 0.64±0.06μM). Our findings indicate that, contrary to LMG, MG behaves as a relatively strong inhibitor of certain liver DMEs and can reversibly bind GSH.

In vitro interactions of malachite green and leucomalachite green with hepatic drug-metabolizing enzyme systems in the rainbow trout (Onchorhyncus mykiss)

NEBBIA, Carlo;GIROLAMI, Flavia;CARLETTI, Monica;GASCO, Laura;ZOCCARATO, Ivo;
2017-01-01

Abstract

Malachite green (MG) has been widely used in aquaculture to treat a number of microbial and parasitic diseases. It is currently banned in the EU because of the high cytotoxicity and carcinogenic activity, which is also shared by leucomalachite green (LMG), a reduced MG metabolite that can persist in fish tissues for months. There is scant information about the ability of either compound to interact with drug metabolizing enzymes in fish. Therefore we evaluated the in vitro effects of MG and LMG (25, 50 and 100μM) on some DMEs and glutathione (GSH) content in rainbow trout liver subfractions. LMG did not affect any of the examined parameters. In contrast, MG proved to deplete GSH and to depress to a various extent the activities of NAD(P)H cytochrome c reductase, 7-ethoxycoumarin O-deethylase, 1-naphthol uridindiphosphoglucuronyl-transferase and maximally those of 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) accepting 1-chloro2,4-dinitrobenzene (CDNB) as substrate. The inhibition mechanisms of EROD and GST were investigated by means of non-linear Michaelis-Menten kinetics and Lineweaver-Burk plots using 0.175-8μM MG. The calculated IC50 for EROD was 7.1μM, and the inhibition appeared to be competitive (Ki 2.78±0.24μM). In the case of GST, the calculated IC50 was 0.53μM. The inhibition was best described as competitive toward GSH (Ki 0.39±0.02μM) and of mixed-type toward CDNB (Ki 0.64±0.06μM). Our findings indicate that, contrary to LMG, MG behaves as a relatively strong inhibitor of certain liver DMEs and can reversibly bind GSH.
2017
280
41
47
Drug-metabolizing enzymes; Enzyme inhibitors; Inhibition kinetics; Leucomalachite green; Malachite green; Trout
Nebbia, Carlo; Girolami, Flavia; Carletti, Monica; Gasco, Laura; Zoccarato, Ivo; Giuliano Albo, Alessandra
File in questo prodotto:
File Dimensione Formato  
19_Nebbia_Toxicology Letters_2017.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 578.71 kB
Formato Adobe PDF
578.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Nebbia et al. 2017_TOXLET.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1647120
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact