Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.

White matter and schizophrenia: a meta-analysis of voxel-based morphometry and diffusion tensor imaging studies

VITOLO, ENRICO;TATU, Mona Karina;PIGNOLO, CLAUDIA;CAUDA, Franco;BRISCHETTO COSTA, Tommaso;ANDO', AGATA MARIA CLAUDIA;ZENNARO, Alessandro
2017

Abstract

Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
270
8
21
Schizophrenia; White Matter; Meta-analysis; Voxel-based Morphometry; Diffusion Tensor Imaging
Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro
File in questo prodotto:
File Dimensione Formato  
Pagine da PSYN_2017_38_Revision 2_V0.pdf

Accesso aperto con embargo fino al 15/10/2018

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
Vitolo et al (2017) - White matter and Schizophrenia.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1649580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact