The gut microbiota (GM) is the whole of commensal, symbiotic, and pathogenic microorganisms living in our intestine. The GM-host interactions contribute to the maturation of the host immune system, modulating its systemic response. It is well documented that GM can interact with non-enteral cells such as immune cells, dendritic cells, and hepatocytes, producing molecules such as short-chain fatty acids, indole derivatives, polyamines, and secondary bile acid. The receptors for some of these molecules are expressed on immune cells, and modulate the differentiation of T effector and regulatory cells: this is the reason why dysbiosis is correlated with several autoimmune, metabolic, and neurodegenerative diseases. Due to the close interplay between immune and bone cells, GM has a central role in maintaining bone health and influences bone turnover and density. GM can improve bone health also increasing calcium absorption and modulating the production of gut serotonin, a molecule that interacts with bone cells and has been suggested to act as a bone mass regulator. Thus, GM manipulation by consumption of antibiotics, changes in dietary habits, and the use of pre- and probiotics may affect bone health. This review summarizes evidences on the influence of GM on immune system and on bone turnover and density and how GM manipulation may influence bone health.

Gut Microbiota, Immune System, and Bone

D'Amelio, P.
First
;
SASSI, FRANCESCA
2017

Abstract

The gut microbiota (GM) is the whole of commensal, symbiotic, and pathogenic microorganisms living in our intestine. The GM-host interactions contribute to the maturation of the host immune system, modulating its systemic response. It is well documented that GM can interact with non-enteral cells such as immune cells, dendritic cells, and hepatocytes, producing molecules such as short-chain fatty acids, indole derivatives, polyamines, and secondary bile acid. The receptors for some of these molecules are expressed on immune cells, and modulate the differentiation of T effector and regulatory cells: this is the reason why dysbiosis is correlated with several autoimmune, metabolic, and neurodegenerative diseases. Due to the close interplay between immune and bone cells, GM has a central role in maintaining bone health and influences bone turnover and density. GM can improve bone health also increasing calcium absorption and modulating the production of gut serotonin, a molecule that interacts with bone cells and has been suggested to act as a bone mass regulator. Thus, GM manipulation by consumption of antibiotics, changes in dietary habits, and the use of pre- and probiotics may affect bone health. This review summarizes evidences on the influence of GM on immune system and on bone turnover and density and how GM manipulation may influence bone health.
1
11
link.springer.de/link/service/journals/00223/index.htm
Bone; Gut microbiota; Immune system; Inflammation; Osteoporosis; Probiotics; Endocrinology, Diabetes and Metabolism; Orthopedics and Sports Medicine; Endocrinology
D'Amelio, P.; Sassi, F.
File in questo prodotto:
File Dimensione Formato  
review gut microbiota CTI 2017.pdf

Accesso aperto con embargo fino al 30/09/2018

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 891.31 kB
Formato Adobe PDF
891.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1649792
Citazioni
  • ???jsp.display-item.citation.pmc??? 61
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 93
social impact