The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridinedicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(II) and Pt(IV) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(II) sites anchored to the MOF framework with Pt(II) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(II), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3-and Cu K-edges.

Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation conditions

Braglia, L.;Borfecchia, E.;Bordiga, S.;Agostini, G.;Manzoli, M.;Lamberti, C.
2017-01-01

Abstract

The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridinedicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(II) and Pt(IV) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(II) sites anchored to the MOF framework with Pt(II) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(II), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3-and Cu K-edges.
2017
201
277
298
http://pubs.rsc.org/en/content/articlehtml/2017/fd/c7fd00024c
METAL-ORGANIC FRAMEWORKS, X-RAY-ABSORPTION, EXAFS, IN SITU CHARACTERIZATION, CATALYTIC-ACTIVITY, HETEROGENEOUS CATALYSTS, METAL NANOPARTICLES
Braglia, Luca; Borfecchia, Elisa; Lomachenko, K. A.; Bugaev, A. L.; Guda, A. A.; Soldatov, A. V.; Bleken, B. T. L.; Øien-ødegaard, S.; Olsbye, U.; Lillerud, K. P.; Bordiga, Silvia; Agostini, Giovanni; Manzoli, Maela; Lamberti, Carlo
File in questo prodotto:
File Dimensione Formato  
2017_Braglia_FaradayDiscuss_MUiO67_edit.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2017_Braglia_FaradayDiscuss_MUiO67_OA.pdf

Open Access dal 07/12/2018

Descrizione: Articolo principale open access
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1651677
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact