Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II)-ions in a robust azolate metal organic framework (MOF) to produce stable and safe-to handle Co(III) materials featuring terminal Co(III) halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III) halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases
Reversible Capture and Release of Cl2and Br2with a Redox-Active Metal-Organic Framework
Lomachenko, Kirill A.;Borfecchia, Elisa;Lamberti, Carlo;
2017-01-01
Abstract
Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II)-ions in a robust azolate metal organic framework (MOF) to produce stable and safe-to handle Co(III) materials featuring terminal Co(III) halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III) halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gasesFile | Dimensione | Formato | |
---|---|---|---|
2017_Tulchinsky_JACS_CoBTDD_MOF_Cl-Br_edit.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2017_Tulchinsky_JACS_CoBTDD_MOF_Cl-Br_OA.pdf
Open Access dal 15/12/2018
Descrizione: Articolo principale open access
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
883.6 kB
Formato
Adobe PDF
|
883.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.