Let u_n be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u_n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless u_n / n is a linear recurrence.
On numbers n relatively prime to the nth term of a linear recurrence
Sanna, Carlo
2019-01-01
Abstract
Let u_n be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u_n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless u_n / n is a linear recurrence.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
nrelprimeun.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
265.87 kB
Formato
Adobe PDF
|
265.87 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.