Let u_n be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u_n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless u_n / n is a linear recurrence.

On numbers n relatively prime to the nth term of a linear recurrence

Sanna, Carlo
2019-01-01

Abstract

Let u_n be a nondegenerate linear recurrence of integers, and let A be the set of positive integers n such that u_n and n are relatively prime. We prove that A has an asymptotic density, and that this density is positive unless u_n / n is a linear recurrence.
2019
42
2
827
833
https://doi.org/10.1007/s40840-017-0514-8
linear recurrences, greatest common divisor, divisibility
Sanna, Carlo
File in questo prodotto:
File Dimensione Formato  
nrelprimeun.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 265.87 kB
Formato Adobe PDF
265.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1651941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact