Reactive oxygen species (ROS) act as signaling molecules that control physiological processes, including cell adaptation to stress. Redox signaling via ROS has quite recently become the focus of much attention in numerous pathological contexts, including neurodegenerative diseases, kidney and cardiovascular disease. Imbalance in ROS formation and degradation has also been implicated in essential hypertension. Essential hypertension is characterized by multiple genetic and environmental factors which do not completely explain its associated risk factors. Thereby, even if advances in therapy have led to a significant reduction in hypertension-associated complications, to interfere with the unbalance of redox signals might represent an additional therapeutic challenge. The decrease of nitric oxide (NO) levels, the antioxidant activity commonly found in preclinical models of hypertension and the ability of antioxidant approaches to reduce ROS levels have spurred clinicians to investigate the contribution of ROS in humans. Indeed, particular effort has recently been devoted to understanding how redox signaling may contribute to vascular pathobiology in human hypertension. However, although biomarkers of oxidative stress have been found to positively correlate with blood pressure in preclinical model of hypertension, human data are less convincing. We herein provide an overview of the most relevant mechanisms via which oxidative stress might contribute to the pathophysiology of essential hypertension. Moreover, alternative approaches, which are directed towards improving antioxidant machinery and/or interfering with ROS production, are also discussed.

The Future Challenge of Reactive Oxygen Species (ROS) in Hypertension: From Bench to Bed Side

TOGLIATTO, Gabriele Maria;LOMBARDO, GIUSY;BRIZZI, Maria Felice
Last
2017-01-01

Abstract

Reactive oxygen species (ROS) act as signaling molecules that control physiological processes, including cell adaptation to stress. Redox signaling via ROS has quite recently become the focus of much attention in numerous pathological contexts, including neurodegenerative diseases, kidney and cardiovascular disease. Imbalance in ROS formation and degradation has also been implicated in essential hypertension. Essential hypertension is characterized by multiple genetic and environmental factors which do not completely explain its associated risk factors. Thereby, even if advances in therapy have led to a significant reduction in hypertension-associated complications, to interfere with the unbalance of redox signals might represent an additional therapeutic challenge. The decrease of nitric oxide (NO) levels, the antioxidant activity commonly found in preclinical models of hypertension and the ability of antioxidant approaches to reduce ROS levels have spurred clinicians to investigate the contribution of ROS in humans. Indeed, particular effort has recently been devoted to understanding how redox signaling may contribute to vascular pathobiology in human hypertension. However, although biomarkers of oxidative stress have been found to positively correlate with blood pressure in preclinical model of hypertension, human data are less convincing. We herein provide an overview of the most relevant mechanisms via which oxidative stress might contribute to the pathophysiology of essential hypertension. Moreover, alternative approaches, which are directed towards improving antioxidant machinery and/or interfering with ROS production, are also discussed.
2017
18
9
1988
2006
ROS; hypertension; mitochondria; redox signaling
Togliatto, Gabriele Maria; Lombardo, Giusy; Brizzi, Maria Felice
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1652121
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 71
social impact