A series of amine-modified SBA-15 was employed as catalysts in the carbonate interchange reaction of ethylene carbonate with methanol to produce dimethyl carbonate (DMC). These materials exhibited good catalytic performances that strongly depended on the reaction temperature. A multi-technique approach was employed to disclose the role played by the different amine chains in driving the whole reaction. To this purpose, in situ FT-IR experiments were combined with theoretical calculations in order to explain the catalytic results observed in the presence of catalysts with different basic strength. A close correlation was found between the number and the nature of the alkylamine chains present in the SBA-15 pores and the capacity of the catalyst to activate the reagent molecules, as well as to stabilize the reaction intermediate. It was demonstrated that the ability of the catalyst to dissociatively adsorb methanol is the key factor for the proper choice of the catalytic system. Moreover, the capacity of the catalyst to stabilize the reaction intermediate has to be considered to allow the reaction to proceed so obtaining the desired final product (DMC).

A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts

Crocellà , Valentina;Vitillo, Jenny G.;BISIO, Chiara;CAVANI, Fabrizio;Bordiga, Silvia
2017-01-01

Abstract

A series of amine-modified SBA-15 was employed as catalysts in the carbonate interchange reaction of ethylene carbonate with methanol to produce dimethyl carbonate (DMC). These materials exhibited good catalytic performances that strongly depended on the reaction temperature. A multi-technique approach was employed to disclose the role played by the different amine chains in driving the whole reaction. To this purpose, in situ FT-IR experiments were combined with theoretical calculations in order to explain the catalytic results observed in the presence of catalysts with different basic strength. A close correlation was found between the number and the nature of the alkylamine chains present in the SBA-15 pores and the capacity of the catalyst to activate the reagent molecules, as well as to stabilize the reaction intermediate. It was demonstrated that the ability of the catalyst to dissociatively adsorb methanol is the key factor for the proper choice of the catalytic system. Moreover, the capacity of the catalyst to stabilize the reaction intermediate has to be considered to allow the reaction to proceed so obtaining the desired final product (DMC).
2017
211
323
336
https://www.sciencedirect.com/science/article/pii/S0926337317303090
Amine-modified SBA-15; Dimethyl carbonate; In situ FT-IR spectroscopy; Intermediate stabilization; Methanol activation; Transesterification reaction; Catalysis; 2300; Process Chemistry and Technology
Crocella', Valentina; Tabanelli, Tommaso; Vitillo, Jenny Grazia; Costenaro, Daniele; Bisio, Chiara; Cavani, Fabrizio; Bordiga, Silvia
File in questo prodotto:
File Dimensione Formato  
Crocellà_ApplCatalB_2017.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Open access_Crocellà_ApplCatalB_2017.pdf

Open Access dal 07/04/2019

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1652740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact