Salvia sinaloensis Fern. (sage) is a medicinal plant containing plant secondary metabolites (PSMs) with antioxidant properties. The current study investigated the effects of drought stress on S. sinaloensis morphological and ecophysiological traits, and active constituent production. Sage plants were cultivated in controlled conditions for 34 days and exposed to full irrigation as control, half irrigation, or no irrigation. Changes in growth index (G.I.), dry biomass, leaf water potential (LWP), physiological parameters, active compounds, volatilome (BVOCs) and essential oils (EOs) were determined. Not irrigated plants showed a decrease in total chlorophyll content (~ − 14.7%) and growth (G.I., ~ − 59.4%) from day 18, and dry biomass at day 21 (− 56%), when the complete leaf withering occurred (LWP, − 1.10 MPa). Moderate drought stressed plants showed similar trends for chlorophyll content and growth but kept a constant LWP (− 0.35 MPa) and dry biomass throughout the experiment, as control plants. Carotenoids were not affected by water regimes. The photosynthetic apparatus tolerated mild to severe water deficits, without a complete stomatal closure. Plants under both stress conditions increased the percentage of phenols and flavonoids and showed altered BVOC and EO chemical profiles. Interestingly Camphor, the main EO oxygenated monoterpene, increased in moderate stressed plants while the sesquiterpene hydrocarbon Germacrene D decreased. The same trend was seen in the headspace under stress severity. The data evidenced a possible role of the active molecules in the response of S. sinaloensis plants to drought stress. Taking together, these findings point at S. sinaloensis as a potential drought adaptive species, which could be used in breeding strategies to obtain sages with high quality PSMs, saving irrigation water.
Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress
Matteo Caser;Walter Chitarra;Claudio Lovisolo;Valentina Scariot
Last
2018-01-01
Abstract
Salvia sinaloensis Fern. (sage) is a medicinal plant containing plant secondary metabolites (PSMs) with antioxidant properties. The current study investigated the effects of drought stress on S. sinaloensis morphological and ecophysiological traits, and active constituent production. Sage plants were cultivated in controlled conditions for 34 days and exposed to full irrigation as control, half irrigation, or no irrigation. Changes in growth index (G.I.), dry biomass, leaf water potential (LWP), physiological parameters, active compounds, volatilome (BVOCs) and essential oils (EOs) were determined. Not irrigated plants showed a decrease in total chlorophyll content (~ − 14.7%) and growth (G.I., ~ − 59.4%) from day 18, and dry biomass at day 21 (− 56%), when the complete leaf withering occurred (LWP, − 1.10 MPa). Moderate drought stressed plants showed similar trends for chlorophyll content and growth but kept a constant LWP (− 0.35 MPa) and dry biomass throughout the experiment, as control plants. Carotenoids were not affected by water regimes. The photosynthetic apparatus tolerated mild to severe water deficits, without a complete stomatal closure. Plants under both stress conditions increased the percentage of phenols and flavonoids and showed altered BVOC and EO chemical profiles. Interestingly Camphor, the main EO oxygenated monoterpene, increased in moderate stressed plants while the sesquiterpene hydrocarbon Germacrene D decreased. The same trend was seen in the headspace under stress severity. The data evidenced a possible role of the active molecules in the response of S. sinaloensis plants to drought stress. Taking together, these findings point at S. sinaloensis as a potential drought adaptive species, which could be used in breeding strategies to obtain sages with high quality PSMs, saving irrigation water.File | Dimensione | Formato | |
---|---|---|---|
Caser et al._PGR2017_POSTPRINT.pdf
Accesso aperto
Descrizione: Versione Post Print Articolo
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
992.94 kB
Formato
Adobe PDF
|
992.94 kB | Adobe PDF | Visualizza/Apri |
Caser et al._PGR2018_EDITOR.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Caser et al., 2018.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.