Multicomponent layered systems with tailored magnetic properties were fabricated via current annealing from homogeneous Fe67Pd33 thin films, deposited via radio frequency sputtering on Si/SiO2 substrates from composite target. To promote spontaneous nano-structuring and phase separation, selected samples were subjected to current annealing in vacuum, with a controlled oxygen pressure, using various current densities for a fixed time and, as a consequence, different phases and microstructures were obtained. In particular, the formation of magnetite in different amount was observed beside other iron oxides and metallic phases. Microstructures and magnetic properties evolution as a function of annealing current were studied and interpreted with different techniques. Moreover, the temperature profile across the film thickness was modelled and its role in the selective oxidation of iron was analysed. Results show that is possible to topologically control the phases formation across the film thickness and simultaneously tailor the magnetic properties of the system.

Tailoring magnetic properties of multicomponent layered structure via current annealing in FePd thin films

Cialone, Matteo;Barrera, Gabriele;Fiore, Gianluca;Rizzi, Paola;Tiberto, Paola
2017-01-01

Abstract

Multicomponent layered systems with tailored magnetic properties were fabricated via current annealing from homogeneous Fe67Pd33 thin films, deposited via radio frequency sputtering on Si/SiO2 substrates from composite target. To promote spontaneous nano-structuring and phase separation, selected samples were subjected to current annealing in vacuum, with a controlled oxygen pressure, using various current densities for a fixed time and, as a consequence, different phases and microstructures were obtained. In particular, the formation of magnetite in different amount was observed beside other iron oxides and metallic phases. Microstructures and magnetic properties evolution as a function of annealing current were studied and interpreted with different techniques. Moreover, the temperature profile across the film thickness was modelled and its role in the selective oxidation of iron was analysed. Results show that is possible to topologically control the phases formation across the film thickness and simultaneously tailor the magnetic properties of the system.
2017
7
1
16691
16698
Cialone, Matteo; Celegato, Federica; Coïsson, Marco; Barrera, Gabriele; Fiore, Gianluca; Shvab, Ruslan; Klement, Uta; Rizzi, Paola; Tiberto, Paola...espandi
File in questo prodotto:
File Dimensione Formato  
Cialone 2017.pdf

Accesso aperto

Descrizione: Versione editoriale
Tipo di file: PDF EDITORIALE
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1654360
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact