Iron (Fe) is an essential element for human nutrition. Given that plants represent a major dietary source of Fe worldwide, it is crucial to understand plant Fe homeostasis fully. A major breakthrough in the understanding of Fe sensing and signaling was the identification of several transcription factor cascades regulating Fe homeostasis. However, the mechanisms of activation of these cascades still remain to be elucidated. In this opinion, we focus on the possible roles of mitochondria and chloroplasts as cellular Fe sensing and signaling sites, offering a new perspective on the integrated regulation of Fe homeostasis and its interplay with cellular metabolism.
Iron (Fe) is an essential element for human nutrition. Given that plants represent a major dietary source of Fe worldwide, it is crucial to understand plant Fe homeostasis fully. A major breakthrough in the understanding of Fe sensing and signaling was the identification of several transcription factor cascades regulating Fe homeostasis. However, the mechanisms of activation of these cascades still remain to be elucidated. In this opinion, we focus on the possible roles of mitochondria and chloroplasts as cellular Fe sensing and signaling sites, offering a new perspective on the integrated regulation of Fe homeostasis and its interplay with cellular metabolism.
Signals from chloroplasts and mitochondria for iron homeostasis regulation
VIGANI, Gianpiero
2013-01-01
Abstract
Iron (Fe) is an essential element for human nutrition. Given that plants represent a major dietary source of Fe worldwide, it is crucial to understand plant Fe homeostasis fully. A major breakthrough in the understanding of Fe sensing and signaling was the identification of several transcription factor cascades regulating Fe homeostasis. However, the mechanisms of activation of these cascades still remain to be elucidated. In this opinion, we focus on the possible roles of mitochondria and chloroplasts as cellular Fe sensing and signaling sites, offering a new perspective on the integrated regulation of Fe homeostasis and its interplay with cellular metabolism.File | Dimensione | Formato | |
---|---|---|---|
post print_Vigani_2013.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
357.92 kB
Formato
Adobe PDF
|
357.92 kB | Adobe PDF | Visualizza/Apri |
pubblicazione 8_Vigani et al 2013 TiPS.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
358.81 kB
Formato
Adobe PDF
|
358.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.