In well aerated soils, iron exists, mainly as scarcely soluble oxides and oxi-hydroxides and, therefore, not freely available to plants uptake, notwithstanding its abundance. Multifaceted strategies involving reductase activities, proton processes, specialized storage proteins, and other, act in concert to mobilize iron from the environment, to take it up and to distribute it inside the plant. Because of its fundamental role in plant productivity several questions concerning homeostasis of iron in plants are currently a matter of intense debate. We discuss some recent studies on Strategy I responses in dicotyledonous plants focusing on metabolic change induced by iron deficiency, mainly concerning the involvement of mitochondria.

Silicon is the second most abundant mineral element in soil, it has important role in alleviating various environmental stresses and enhancing plant resistance against pathogen, but the exact mechanism by which Si mediates pathogen resistance remains unclear. One of the resistance mechanisms is related to silicon deposition in leaf that acts as a physical barrier to hinder pathogen penetration. But more evidence show that silicon can induce defense responses that are functionally similar to systemic acquired resistance, Si-treated plants can significantly increase antioxidant enzyme activities and the production of antifungal compounds such as phenolic metabolism product, phytoalexins and pathogenesis-related proteins etc. Molecular and biochemical detections show that Si can activate the expression of defense-related genes and may play important role in the transduction of plant stress signal such as salicylic acid, jasmonic acid and ethylene.

The fate and the role of mitochondria in Fe-deficient root of strategy I plants

VIGANI, Gianpiero
2009-01-01

Abstract

Silicon is the second most abundant mineral element in soil, it has important role in alleviating various environmental stresses and enhancing plant resistance against pathogen, but the exact mechanism by which Si mediates pathogen resistance remains unclear. One of the resistance mechanisms is related to silicon deposition in leaf that acts as a physical barrier to hinder pathogen penetration. But more evidence show that silicon can induce defense responses that are functionally similar to systemic acquired resistance, Si-treated plants can significantly increase antioxidant enzyme activities and the production of antifungal compounds such as phenolic metabolism product, phytoalexins and pathogenesis-related proteins etc. Molecular and biochemical detections show that Si can activate the expression of defense-related genes and may play important role in the transduction of plant stress signal such as salicylic acid, jasmonic acid and ethylene.
2009
4
5
1
5
http://www.landesbioscience.com/journals/psb/article/ViganiPSB4-5.pdf
Biotic stress; Induced resistance; Pathogen; Signal transduction; Silicon
In well aerated soils, iron exists, mainly as scarcely soluble oxides and oxi-hydroxides and, therefore, not freely available to plants uptake, notwithstanding its abundance. Multifaceted strategies involving reductase activities, proton processes, specialized storage proteins, and other, act in concert to mobilize iron from the environment, to take it up and to distribute it inside the plant. Because of its fundamental role in plant productivity several questions concerning homeostasis of iron in plants are currently a matter of intense debate. We discuss some recent studies on Strategy I responses in dicotyledonous plants focusing on metabolic change induced by iron deficiency, mainly concerning the involvement of mitochondria.
G. Vigani; G. Zocchi
File in questo prodotto:
File Dimensione Formato  
post print_Vigani_2010.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 326.21 kB
Formato Adobe PDF
326.21 kB Adobe PDF Visualizza/Apri
Vigani and Zocchi (2009) Plant Signalling and Behaviour.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1655374
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 82
  • ???jsp.display-item.citation.isi??? ND
social impact