Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants
VIGANI, Gianpiero
First
2017-01-01
Abstract
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.File | Dimensione | Formato | |
---|---|---|---|
Vigani_et_al-2017-New_Phytologist.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Vigani et al 2017_New Phytol_post print.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.