Stem cell factor (SCF) and its tyrosine kinase receptor, c-Kit, play a crucial role in regulating migration and proliferation of melanoblasts, germ cells, and hemopoietic cell progenitors by activating a number of intracellular signaling molecules. Here we report that SCF stimulation of myeloid cells or fibroblasts ectopically expressing c-Kit induces physical association with and tyrosine phosphorylation of three signal transducers and activators of transcription (STATs) as follows: STAT1alpha, STAT5A, and STAT5B. Other STAT proteins are not recruited upon SCF stimulation. Recruitment of STATs leads to their dimerization, nuclear translocation, and binding to specific promoter-responsive elements. Whereas STAT1alpha, possibly in the form of homodimers, binds to the sis-inducible DNA element, STAT5 proteins, either as STAT5A/STAT5B or STAT5/STAT1alpha heterodimers, bind to the prolactin-inducible element of the beta-casein promoter. The tyrosine kinase activity of Kit appears essential for STAT activation since a kinase-defective mutant lacking a kinase insert domain was inactive in STAT signaling. However, another mutant that lacked the carboxyl-terminal region retained STAT1alpha activation and nuclear translocation but was unable to fully activate STAT5 proteins, although it mediated their transient phosphorylation. These results indicate that different intracellular domains of c-Kit are involved in activation of the various STAT proteins.
STAT PROTEIN RECRUITMENT AND ACTIVATION IN c-Kit DELETION MUTANTS.
BRIZZI, Maria Felice;DENTELLI, Patrizia;ROSSO, Arturo;PEGORARO, Luigi
1999-01-01
Abstract
Stem cell factor (SCF) and its tyrosine kinase receptor, c-Kit, play a crucial role in regulating migration and proliferation of melanoblasts, germ cells, and hemopoietic cell progenitors by activating a number of intracellular signaling molecules. Here we report that SCF stimulation of myeloid cells or fibroblasts ectopically expressing c-Kit induces physical association with and tyrosine phosphorylation of three signal transducers and activators of transcription (STATs) as follows: STAT1alpha, STAT5A, and STAT5B. Other STAT proteins are not recruited upon SCF stimulation. Recruitment of STATs leads to their dimerization, nuclear translocation, and binding to specific promoter-responsive elements. Whereas STAT1alpha, possibly in the form of homodimers, binds to the sis-inducible DNA element, STAT5 proteins, either as STAT5A/STAT5B or STAT5/STAT1alpha heterodimers, bind to the prolactin-inducible element of the beta-casein promoter. The tyrosine kinase activity of Kit appears essential for STAT activation since a kinase-defective mutant lacking a kinase insert domain was inactive in STAT signaling. However, another mutant that lacked the carboxyl-terminal region retained STAT1alpha activation and nuclear translocation but was unable to fully activate STAT5 proteins, although it mediated their transient phosphorylation. These results indicate that different intracellular domains of c-Kit are involved in activation of the various STAT proteins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.