Molecularly imprinted thin layers were prepared in silica capillaries by using two different surface polymerization strategies, the first using 4,4′-azobis(4-cyanovaleric acid) as a surface-coupled radical initiator, and the second, S-carboxypropyl-S’-benzyltrithiocarbonate as a reversible addition-fragmentation chain transfer (RAFT) agent in combination with 2,2′-azobisisobutyronitrile as a free radical initiator. The ability to generate imprinted thin layers was tested on two different polymerization systems: (i) a 4-vinylpyridine/ethylene dimethacrylate (4VPEDMA) in methanol-water solution with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a template; and (ii) methacrylic acid/ethylene dimethacrylate (MAA-EDMA) in a chloroform solution with warfarin as the template molecule. The binding properties of the imprinted capillaries were studied and compared with those of the corresponding non-imprinted polymer coated capillaries by injecting the template molecule and by measuring its migration times relative to a neutral and non-retained marker. The role of running buffer hydrophobicity on recognition was investigated by studying the influence of varying buffer acetonitrile concentration. The 2,4,5-T-imprinted capillary showed molecular recognition based on a reversed phase mechanism, with a decrease of the template recognition in the presence of higher acetonitrile content; whereas warfarin-imprinted capillaries showed a bell-shaped trend upon varying the acetonitrile percentage, illustrating different mechanisms underlying imprinted polymer-ligand recognition. Importantly, the results demonstrated the validity of affinity capillary electrochromatography (CEC) to screen the binding properties of imprinted layers

Affinity Capillary Electrochromatography of Molecularly Imprinted Thin Layers Grafted onto Silica Capillaries Using a Surface-Bound Azo-Initiator and Living Polymerization

Cristina Giovannoli;Cinzia Passini;Fabio Di Nardo;Laura Anfossi;Claudio Baggiani;
2018-01-01

Abstract

Molecularly imprinted thin layers were prepared in silica capillaries by using two different surface polymerization strategies, the first using 4,4′-azobis(4-cyanovaleric acid) as a surface-coupled radical initiator, and the second, S-carboxypropyl-S’-benzyltrithiocarbonate as a reversible addition-fragmentation chain transfer (RAFT) agent in combination with 2,2′-azobisisobutyronitrile as a free radical initiator. The ability to generate imprinted thin layers was tested on two different polymerization systems: (i) a 4-vinylpyridine/ethylene dimethacrylate (4VPEDMA) in methanol-water solution with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a template; and (ii) methacrylic acid/ethylene dimethacrylate (MAA-EDMA) in a chloroform solution with warfarin as the template molecule. The binding properties of the imprinted capillaries were studied and compared with those of the corresponding non-imprinted polymer coated capillaries by injecting the template molecule and by measuring its migration times relative to a neutral and non-retained marker. The role of running buffer hydrophobicity on recognition was investigated by studying the influence of varying buffer acetonitrile concentration. The 2,4,5-T-imprinted capillary showed molecular recognition based on a reversed phase mechanism, with a decrease of the template recognition in the presence of higher acetonitrile content; whereas warfarin-imprinted capillaries showed a bell-shaped trend upon varying the acetonitrile percentage, illustrating different mechanisms underlying imprinted polymer-ligand recognition. Importantly, the results demonstrated the validity of affinity capillary electrochromatography (CEC) to screen the binding properties of imprinted layers
2018
10
192
200
http://www.mdpi.com/2073-4360/10
molecularly imprinted polymers, capillary electrophoresis, controlled/living radical polymerization, 2,4,5-trichlorophenoxyacedic acid, warfarin
Cristina Giovannoli, Cinzia Passini, Fabio Di Nardo, Laura Anfossi, Claudio Baggiani, Ian A. Nicholls
File in questo prodotto:
File Dimensione Formato  
pol18_10_192.pdf

Accesso aperto

Descrizione: file editoriale in open access
Tipo di file: PDF EDITORIALE
Dimensione 673.95 kB
Formato Adobe PDF
673.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1660002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact