The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ρ(xc) = 0 and λ1, λ2, λ3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at xc], towards degenerate critical points, i.e. ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of xc and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO2 (rutile structure), MgO (periclase structure) and Al2O3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.Electron-density topology is used to detect instability in periodic solids

Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids

Merli M.;Pavese A.
2018-01-01

Abstract

The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ρ(xc) = 0 and λ1, λ2, λ3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at xc], towards degenerate critical points, i.e. ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of xc and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO2 (rutile structure), MgO (periclase structure) and Al2O3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.Electron-density topology is used to detect instability in periodic solids
2018
74
2
102
111
electron-density critical points, catastrophe theory, phase/state transitions in crystals, ab initio calculations.
Merli M., Pavese A.
File in questo prodotto:
File Dimensione Formato  
Acta crystallographica_2018_Pavese A.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 935.77 kB
Formato Adobe PDF
935.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper-final-0.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1660024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact