Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF) Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs) to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada) and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD) and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose) were monitored during the experiment. Biological Oxygen Demand (BOD5) and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L) in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.

Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta

Valeria Tigini;Federica Spina;Giovanna Cristina Varese;
2017-01-01

Abstract

Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF) Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs) to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada) and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD) and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose) were monitored during the experiment. Biological Oxygen Demand (BOD5) and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L) in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.
2017
9
11
824
837
http://www.mdpi.com/2073-4441/9/11/824/pdf
http://dx.doi.org/10.3390/W9110824
bioremediation, landfill leachate, recalcitrant compounds, wastewater treatment, white-rot fungi
Alessandra Bardi, Qiuyan Yuan, Valeria Tigini, Federica Spina, Giovanna Cristina Varese, Francesco Spennati, Simone Becarelli, Simona Di Gregorio, Giulio Petroni, Giulio Munz
File in questo prodotto:
File Dimensione Formato  
water-09-00824-v2.pdf

Accesso aperto

Descrizione: Articolo Bardi PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1660484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact