Neuropilins are a class of cell surface proteins implicated in cell migration and angiogenesis, with aberrant expression in human tumors. Here, we show that the expression of Neuropilin-2 (NRP2) controls EGFR protein levels, thereby impinging on intracellular signaling, viability, and response to targeted therapies of oncogene-addicted cells. Notably, increased NRP2 expression in EGFR-addicted tumor cells led to downregulation of EGFR protein and tumor cell growth inhibition. NRP2 also blunted upregulation of an EGFR "rescue" pathway induced by targeted therapy in Met-addicted carcinoma cells. Cancer cells acquiring resistance to MET oncogene-targeted drugs invariably underwent NRP2 loss, a step required for EGFR upregulation. Mechanistic investigations revealed that NRP2 loss activated NFkB and upregulated the EGFR-associated protein KIAA1199/CEMIP, which is known to oppose the degradation of activated EGFR kinase. Notably, KIAA1199 silencing in oncogene-addicted tumor cells improved therapeutic responses and counteracted acquired drug resistance. Our findings define NRP2 as the pivotal switch of a novel broad-acting and actionable pathway controlling EGFR signaling, and driving resistance to therapies targeting oncogene-addiction.Significance:These important findings identify the cell surface molecule Nrp2 as the pivotal switch of a novel, actionable pathway driving EGFR upregulation and resistance to oncogene- targeted therapies.
Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies
Rizzolio, Sabrina;Battistini, Chiara;Cagnoni, Gabriella;Apicella, Maria;Giordano, Silvia;Tamagnone, Luca
2018-01-01
Abstract
Neuropilins are a class of cell surface proteins implicated in cell migration and angiogenesis, with aberrant expression in human tumors. Here, we show that the expression of Neuropilin-2 (NRP2) controls EGFR protein levels, thereby impinging on intracellular signaling, viability, and response to targeted therapies of oncogene-addicted cells. Notably, increased NRP2 expression in EGFR-addicted tumor cells led to downregulation of EGFR protein and tumor cell growth inhibition. NRP2 also blunted upregulation of an EGFR "rescue" pathway induced by targeted therapy in Met-addicted carcinoma cells. Cancer cells acquiring resistance to MET oncogene-targeted drugs invariably underwent NRP2 loss, a step required for EGFR upregulation. Mechanistic investigations revealed that NRP2 loss activated NFkB and upregulated the EGFR-associated protein KIAA1199/CEMIP, which is known to oppose the degradation of activated EGFR kinase. Notably, KIAA1199 silencing in oncogene-addicted tumor cells improved therapeutic responses and counteracted acquired drug resistance. Our findings define NRP2 as the pivotal switch of a novel broad-acting and actionable pathway controlling EGFR signaling, and driving resistance to therapies targeting oncogene-addiction.Significance:These important findings identify the cell surface molecule Nrp2 as the pivotal switch of a novel, actionable pathway driving EGFR upregulation and resistance to oncogene- targeted therapies.File | Dimensione | Formato | |
---|---|---|---|
2018_Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies.pdf
Accesso riservato
Descrizione: Cancer Research 2018_RISERVATO
Tipo di file:
PDF EDITORIALE
Dimensione
799.31 kB
Formato
Adobe PDF
|
799.31 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cancer Research 2018_Aperto.pdf
Open Access dal 17/02/2019
Descrizione: Cancer Research 2018_APERTO
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
565.39 kB
Formato
Adobe PDF
|
565.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.