The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si–C–O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2–50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.

Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters

Bruzzoniti, Maria Concetta;Appendini, Marta;Castiglioni, Michele;Rivoira, Luca
2018-01-01

Abstract

The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si–C–O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2–50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.
2018
25(11)
10619
10629
http://www.springerlink.com/content/0944-1344
Adsorption; Dyes; Polymer-derived ceramics; Regeneration; Textile wastewater; Environmental Chemistry; Pollution; Health, Toxicology and Mutagenesis
Bruzzoniti, Maria Concetta*; Appendini, Marta; Onida, Barbara; Castiglioni, Michele; Del Bubba, Massimo; Vanzetti, Lia; Jana, Prasanta; Sorarù, Gian Domenico; Rivoira, Luca
File in questo prodotto:
File Dimensione Formato  
Per Aperto.pdf

Open Access dal 31/01/2019

Descrizione: Articolo per open access
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri
10.1007_s11356-018-1367-x Author copy.pdf

Accesso riservato

Descrizione: PDF Editoriale
Tipo di file: PDF EDITORIALE
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1661261
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact