Temporal information plays a crucial role in medicine. Patients’ clinical records are intrinsically temporal. Thus, in Medical Informatics there is an increasing need to store, support and query temporal data (particularly in relational databases), in order, for instance, to supplement decision-support systems. In this paper, we show that current approaches to relational data have remarkable limitations in the treatment of “now-relative” data (i.e., data holding true at the current time). This can severely compromise their applicability in general, and specifically in the medical context, where “now-relative” data are essential to assess the current status of the patients. We propose a theoretically grounded and application-independent relational approach to cope with now-relative data (which can be paired, e.g., with different decision support systems) overcoming such limitations. We propose a new temporal relational representation, which is the first relational model coping with the temporal indeterminacy intrinsic in now-relative data. We also propose new temporal algebraic operators to query them, supporting the distinction between possible and necessary time, and Allen’s temporal relations between data. We exemplify the impact of our approach, and study the theoretical and computational properties of the new representation and algebra.
Representing and querying now-relative relational medical data
Anselma, Luca;Piovesan, Luca;Terenziani, Paolo
2018-01-01
Abstract
Temporal information plays a crucial role in medicine. Patients’ clinical records are intrinsically temporal. Thus, in Medical Informatics there is an increasing need to store, support and query temporal data (particularly in relational databases), in order, for instance, to supplement decision-support systems. In this paper, we show that current approaches to relational data have remarkable limitations in the treatment of “now-relative” data (i.e., data holding true at the current time). This can severely compromise their applicability in general, and specifically in the medical context, where “now-relative” data are essential to assess the current status of the patients. We propose a theoretically grounded and application-independent relational approach to cope with now-relative data (which can be paired, e.g., with different decision support systems) overcoming such limitations. We propose a new temporal relational representation, which is the first relational model coping with the temporal indeterminacy intrinsic in now-relative data. We also propose new temporal algebraic operators to query them, supporting the distinction between possible and necessary time, and Allen’s temporal relations between data. We exemplify the impact of our approach, and study the theoretical and computational properties of the new representation and algebra.File | Dimensione | Formato | |
---|---|---|---|
aimj5.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
755.26 kB
Formato
Adobe PDF
|
755.26 kB | Adobe PDF | Visualizza/Apri |
Anselma2018.Representing.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.